IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v16y2024i3d10.1007_s12469-024-00362-x.html
   My bibliography  Save this article

G2Viz: an online tool for visualizing and analyzing a public transit system from GTFS data

Author

Listed:
  • Sirapop Para

    (Chiang Mai University)

  • Thanachok Wirotsasithon

    (Chiang Mai University)

  • Thanisorn Jundee

    (Chiang Mai University
    Chiang Mai University)

  • Merkebe Getachew Demissie

    (University of Calgary)

  • Yoshihide Sekimoto

    (The University of Tokyo)

  • Filip Biljecki

    (National University of Singapore
    National University of Singapore)

  • Santi Phithakkitnukoon

    (Chiang Mai University
    Chiang Mai University)

Abstract

Public transit agencies have amassed substantial data through on-board and off-board sensors over the years. While data collection was the primary focus, there is now a shift towards deriving actionable insights from this wealth of information. As data-driven decision making becomes increasingly vital, there is a growing need for effective ways to visualize and convey complex insights to decision makers. This study addresses this need by introducing G2Viz, a visualizer for public transit operations. The development process of G2Viz spans requirement gathering, planning, and design, encompassing software architecture, data models, user interfaces, and system components. Rigorous implementation and testing ensure the tool’s functionality and effectiveness. G2Viz, designed to dynamically visualize public transit operations using General Transit Feed Specification (GTFS) data, is a web application accessible globally via any web browser. Its open-source nature, robustness, and versatility facilitate communication among transit agencies, users, researchers, and city authorities. G2Viz empowers transit planners to make well-informed decisions about public transportation. (Access G2Viz at https://g2viz.citycontext.info ).

Suggested Citation

  • Sirapop Para & Thanachok Wirotsasithon & Thanisorn Jundee & Merkebe Getachew Demissie & Yoshihide Sekimoto & Filip Biljecki & Santi Phithakkitnukoon, 2024. "G2Viz: an online tool for visualizing and analyzing a public transit system from GTFS data," Public Transport, Springer, vol. 16(3), pages 893-928, October.
  • Handle: RePEc:spr:pubtra:v:16:y:2024:i:3:d:10.1007_s12469-024-00362-x
    DOI: 10.1007/s12469-024-00362-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-024-00362-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-024-00362-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafael H. M. Pereira & Pedro R. Andrade & João Pedro Bazzo Vieira, 2023. "Exploring the time geography of public transport networks with the gtfs2gps package," Journal of Geographical Systems, Springer, vol. 25(3), pages 453-466, July.
    2. Zack Aemmer & Andisheh Ranjbari & Don MacKenzie, 2022. "Measurement and classification of transit delays using GTFS-RT data," Public Transport, Springer, vol. 14(2), pages 263-285, June.
    3. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
    4. Mesbah, Mahmoud & Currie, Graham & Lennon, Claudia & Northcott, Trevor, 2012. "Spatial and temporal visualization of transit operations performance data at a network level," Journal of Transport Geography, Elsevier, vol. 25(C), pages 15-26.
    5. Juan Godfrid & Pablo Radnic & Alejandro Vaisman & Esteban Zimányi, 2022. "Analyzing public transport in the city of Buenos Aires with MobilityDB," Public Transport, Springer, vol. 14(2), pages 287-321, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    2. Tianxing Dai & Brian D. Taylor, 2023. "Three’s a crowd? Examining evolving public transit crowding standards amidst the COVID-19 pandemic," Public Transport, Springer, vol. 15(2), pages 321-341, June.
    3. Alessandro Vitale & Giuseppe Guido & Daniele Rogano, 2016. "A smartphone based DSS platform for assessing transit service attributes," Public Transport, Springer, vol. 8(2), pages 315-340, September.
    4. Merkebe Getachew Demissie & Lina Kattan, 2022. "Understanding the temporal and spatial interactions between transit ridership and urban land-use patterns: an exploratory study," Public Transport, Springer, vol. 14(2), pages 385-417, June.
    5. Vanessa Brum-Bastos & Antonio Páez, 2023. "Hägerstrand meets big data: time-geography in the age of mobility analytics," Journal of Geographical Systems, Springer, vol. 25(3), pages 327-336, July.
    6. Daniela Arias-Molinares & Juan Carlos García-Palomares & Gustavo Romanillos & Javier Gutiérrez, 2023. "Uncovering spatiotemporal micromobility patterns through the lens of space–time cubes and GIS tools," Journal of Geographical Systems, Springer, vol. 25(3), pages 403-427, July.
    7. Nichols, Aaron & Ryan, Jean & Palmqvist, Carl-William, 2024. "The importance of recurring public transport delays for accessibility and mode choice," Journal of Transport Geography, Elsevier, vol. 115(C).
    8. Liping Ge & Natalia Kliewer & Abtin Nourmohammadzadeh & Stefan Voß & Lin Xie, 2024. "Revisiting the richness of integrated vehicle and crew scheduling," Public Transport, Springer, vol. 16(3), pages 775-801, October.
    9. Mohammad Masoud Rahimi & Elham Naghizade & Mark Stevenson & Stephan Winter, 2023. "SentiHawkes: a sentiment-aware Hawkes point process to model service quality of public transport using Twitter data," Public Transport, Springer, vol. 15(2), pages 343-376, June.
    10. Shiwakoti, Nirajan & Stasinopoulos, Peter & Vincec, Paul & Qian, Weidong & Hafsar, Renan, 2019. "Exploring how perceptive differences impact the current public transport usage and support for future public transport extension and usage: A case study of Melbourne's tramline extension," Transport Policy, Elsevier, vol. 84(C), pages 12-23.
    11. Atsushi Iimi, 2023. "Estimating the demand for informal public transport: evidence from Antananarivo, Madagascar," Public Transport, Springer, vol. 15(1), pages 129-168, March.
    12. Saipraneeth Devunuri & Shirin Qiam & Lewis J. Lehe, 2024. "ChatGPT for GTFS: benchmarking LLMs on GTFS semantics... and retrieval," Public Transport, Springer, vol. 16(2), pages 333-357, June.
    13. Zack Aemmer & Andisheh Ranjbari & Don MacKenzie, 2022. "Measurement and classification of transit delays using GTFS-RT data," Public Transport, Springer, vol. 14(2), pages 263-285, June.
    14. Oliveira, Renata Lúcia Magalhães de & Dablanc, Laetitia & Schorung, Matthieu, 2022. "Changes in warehouse spatial patterns and rental prices: Are they related? Exploring the case of US metropolitan areas," Journal of Transport Geography, Elsevier, vol. 104(C).
    15. Stefan Voß, 2023. "Bus Bunching and Bus Bridging: What Can We Learn from Generative AI Tools like ChatGPT?," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    16. Benedetto Barabino & Mauro Coni & Massimo Francesco & Andrea Obino & Roberto Ventura, 2024. "Origin–destination matrices from smartphone apps for bus networks," Public Transport, Springer, vol. 16(2), pages 505-549, June.
    17. Dibya Nandan Mishra & Rajeev Kumar Panda, 2023. "Decoding customer experiences in rail transport service: application of hybrid sentiment analysis," Public Transport, Springer, vol. 15(1), pages 31-60, March.
    18. Tadej Brezina & Anita Graser & Ulrich Leth, 2017. "Geometric methods for estimating representative sidewalk widths applied to Vienna’s streetscape surfaces database," Journal of Geographical Systems, Springer, vol. 19(2), pages 157-174, April.
    19. Handley, John C. & Fu, Lina & Tupper, Laura L., 2019. "A case study in spatial-temporal accessibility for a transit system," Journal of Transport Geography, Elsevier, vol. 75(C), pages 25-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:16:y:2024:i:3:d:10.1007_s12469-024-00362-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.