IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/qydr6.html
   My bibliography  Save this paper

Exploring the time geography of public transport networks with the gtfs2gps package

Author

Listed:
  • Pereira, Rafael H. M.
  • Andrade, Pedro R.
  • Bazzo Vieira, João Pedro

Abstract

The creation of the General Transit Feed Specification (GTFS) in the mid-2000s provided a new data format for cities to organize and share digital information on their public transport systems. GTFS feeds store geolocated data on public transport networks, including information on routes, stops, timetables, and service levels. The GTFS standard is now widely adopted by thousands of transport authorities and a wide variety of software applications for different purposes, including trip planning, timetable creation and accessibility analysis. Yet, there is still a lack of tools to parse GTFS data in a way that allows one to analyze the complex spatial and temporal patterns of public transport systems. This paper presents gtfs2gps, a new computational tool to easily process GTFS data that allows one to analyze the space-time trajectories of public transport vehicles at fine spatial and temporal resolutions. gtfs2gps is an open-source R package that employs parallel computing to convert GTFS feeds from relational text files into a data table format similar to GPS records with the timestamps of vehicles in every single trip. This paper explains the package functionalities and demonstrates how gtfs2gps can be used to articulate key concepts in time geography to explore and visualize the spatial and temporal patterns of public transport networks. The paper is accompanied by a computational notebook in R Markdown that allows one to easily reproduce the results in this paper or even replicate the analysis and data visualizations for other contexts where GTFS data is available. Given the widespread use of GTFS by transport agencies, gtfs2gps opens new possibilities for researchers to examine the time geography of public transport systems in urban areas across the globe.

Suggested Citation

  • Pereira, Rafael H. M. & Andrade, Pedro R. & Bazzo Vieira, João Pedro, 2022. "Exploring the time geography of public transport networks with the gtfs2gps package," SocArXiv qydr6, Center for Open Science.
  • Handle: RePEc:osf:socarx:qydr6
    DOI: 10.31219/osf.io/qydr6
    as

    Download full text from publisher

    File URL: https://osf.io/download/6269dbf25d02bc0c4ceccdbd/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/qydr6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robin Lovelace, 2021. "Open source tools for geographic analysis in transport planning," Journal of Geographical Systems, Springer, vol. 23(4), pages 547-578, October.
    2. Arbex, Renato & Cunha, Claudio B., 2020. "Estimating the influence of crowding and travel time variability on accessibility to jobs in a large public transport network using smart card big data," Journal of Transport Geography, Elsevier, vol. 85(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Arias-Molinares & Juan Carlos García-Palomares & Gustavo Romanillos & Javier Gutiérrez, 2023. "Uncovering spatiotemporal micromobility patterns through the lens of space–time cubes and GIS tools," Journal of Geographical Systems, Springer, vol. 25(3), pages 403-427, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael H. M. Pereira & Pedro R. Andrade & João Pedro Bazzo Vieira, 2023. "Exploring the time geography of public transport networks with the gtfs2gps package," Journal of Geographical Systems, Springer, vol. 25(3), pages 453-466, July.
    2. Higgins, Christopher D. & Páez, Antonio & Kim, Gyoorie & Wang, Jue, 2021. "Changes in accessibility to emergency and community food services during COVID-19 and implications for low income populations in Hamilton, Ontario," Social Science & Medicine, Elsevier, vol. 291(C).
    3. Lin, Joanne Yuh-Jye & Jenelius, Erik & Cebecauer, Matej & Rubensson, Isak & Chen, Cynthia, 2023. "The equity of public transport crowding exposure," Journal of Transport Geography, Elsevier, vol. 110(C).
    4. Antonio Páez, 2021. "Open spatial sciences: an introduction," Journal of Geographical Systems, Springer, vol. 23(4), pages 467-476, October.
    5. Guzman, Luis A. & Cantillo-Garcia, Victor A. & Oviedo, Daniel & Arellana, Julian, 2023. "How much is accessibility worth? Utility-based accessibility to evaluate transport policies," Journal of Transport Geography, Elsevier, vol. 112(C).
    6. Elise Desjardins & Christopher D. Higgins & Darren M. Scott & Emma Apatu & Antonio Páez, 2022. "Correlates of bicycling trip flows in Hamilton, Ontario: fastest, quietest, or balanced routes?," Transportation, Springer, vol. 49(3), pages 867-895, June.
    7. Kai Ma & YongJian Tan & Zhong Xie & Qinjun Qiu & Siqiong Chen, 2022. "Chinese toponym recognition with variant neural structures from social media messages based on BERT methods," Journal of Geographical Systems, Springer, vol. 24(2), pages 143-169, April.
    8. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Brands, Ties & van Oort, Niels & Teller, David, 2021. "Multi-city exploration of built environment and transit mode use: Comparison of Melbourne, Amsterdam and Boston," Journal of Transport Geography, Elsevier, vol. 95(C).
    9. Zhang, Guozheng & Wang, Dianhai & Cai, Zhengyi & Zeng, Jiaqi, 2024. "Competitiveness of public transit considering travel time reliability: A case study for commuter trips in Hangzhou, China," Journal of Transport Geography, Elsevier, vol. 114(C).
    10. Soomauroo, Zakia & Blechinger, Philipp & Creutzig, Felix, 2023. "Electrifying public transit benefits public finances in small island developing states," Transport Policy, Elsevier, vol. 138(C), pages 45-59.
    11. Uğur Baç, 2020. "An Integrated SWARA-WASPAS Group Decision Making Framework to Evaluate Smart Card Systems for Public Transportation," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    12. Vanessa Brum-Bastos & Antonio Páez, 2023. "Hägerstrand meets big data: time-geography in the age of mobility analytics," Journal of Geographical Systems, Springer, vol. 25(3), pages 327-336, July.
    13. Nichols, Aaron & Ryan, Jean & Palmqvist, Carl-William, 2024. "The importance of recurring public transport delays for accessibility and mode choice," Journal of Transport Geography, Elsevier, vol. 115(C).
    14. Da Silva, Diego & Klumpenhouwer, Willem & Karner, Alex & Robinson, Mitchell & Liu, Rick & Shalaby, Amer, 2022. "Living on a fare: Modeling and quantifying the effects of fare budgets on transit access and equity," Journal of Transport Geography, Elsevier, vol. 101(C).
    15. Luyu Liu & Adam Porr & Harvey J. Miller, 2023. "Realizable accessibility: evaluating the reliability of public transit accessibility using high-resolution real-time data," Journal of Geographical Systems, Springer, vol. 25(3), pages 429-451, July.
    16. Denys Ponkratov & Denys Kopytkov & Victor Dolya, 2023. "A comprehensive analysis of the electronic fare collection systems effectiveness implementation on public transit and prospective directions of its application in Ukraine," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 4(2(72)), pages 51-54, August.
    17. Yang, Lan & Eom, Sunyong & Suzuki, Tsutomu, 2021. "Measuring railway network performance considering accessibility levels in cities worldwide," Journal of Transport Geography, Elsevier, vol. 96(C).
    18. Erik B Lunke & Nils Fearnley & Jørgen Aarhaug, 2023. "The geography of public transport competitiveness in thirteen medium sized cities," Environment and Planning B, , vol. 50(8), pages 2071-2086, October.
    19. Sun, Li & Zhao, Juanjuan & Zhang, Jun & Zhang, Fan & Ye, Kejiang & Xu, Chengzhong, 2024. "Activity-based individual travel regularity exploring with entropy-space K-means clustering using smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    20. Anson F Stewart & Andrew M Byrd, 2023. "Half-(head)way there: Comparing two methods to account for public transport waiting time in accessibility indicators," Environment and Planning B, , vol. 50(8), pages 2187-2202, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:qydr6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.