IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v13y2021i3d10.1007_s12469-021-00274-0.html
   My bibliography  Save this article

Space–time classification of public transit smart card users’ activity locations from smart card data

Author

Listed:
  • Li He

    (Autorité Régionale de Transport Métropolitain)

  • Martin Trépanier

    (Polytechnique Montréal and CIRRELT)

  • Bruno Agard

    (Polytechnique Montréal and CIRRELT)

Abstract

Smart card data from public transit systems has proven to be useful to understand the behaviors of public transit users. Relevant research has been done concerning: (1) the utilization of smart card data, (2) data mining techniques and (3) the utilization of data mining in smart card data. In prior research, the classification of user behavior has been based on trips when temporal and spatial classifications are considered to be separate processes. Therefore, it is of interest to develop a method based on users' daily behaviors that takes into account both spatial and temporal behaviors at the same time. In this work, a methodology is developed to classify smart card users' behaviors based on dynamic time warping (DTW), hierarchical clustering and a sampling method. A three-dimensional space–time prism plot demonstrates the efficiency of the algorithm.

Suggested Citation

  • Li He & Martin Trépanier & Bruno Agard, 2021. "Space–time classification of public transit smart card users’ activity locations from smart card data," Public Transport, Springer, vol. 13(3), pages 579-595, October.
  • Handle: RePEc:spr:pubtra:v:13:y:2021:i:3:d:10.1007_s12469-021-00274-0
    DOI: 10.1007/s12469-021-00274-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-021-00274-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-021-00274-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan M. Bunker, 2018. "High volume bus stop upstream average waiting time for working capacity and quality of service," Public Transport, Springer, vol. 10(2), pages 311-333, August.
    2. Hiroaki Nishiuchi & Yasuyuki Kobayashi & Tomoyuki Todoroki & Tomoya Kawasaki, 2018. "Impact analysis of reductions in tram services in rural areas in Japan using smart card data," Public Transport, Springer, vol. 10(2), pages 291-309, August.
    3. Farber, Steven & O'Kelly, Morton & Miller, Harvey J. & Neutens, Tijs, 2015. "Measuring segregation using patterns of daily travel behavior: A social interaction based model of exposure," Journal of Transport Geography, Elsevier, vol. 49(C), pages 26-38.
    4. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    5. Filip Covic & Stefan Voß, 2019. "Interoperable smart card data management in public mass transit," Public Transport, Springer, vol. 11(3), pages 523-548, October.
    6. Yanshuo Sun & Jungang Shi & Paul M. Schonfeld, 2016. "Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: a case study of Shanghai Metro," Public Transport, Springer, vol. 8(3), pages 341-363, December.
    7. Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
    8. Cecilia Viggiano & Haris N. Koutsopoulos & Nigel H. M. Wilson & John Attanucci, 2017. "Journey-based characterization of multi-modal public transportation networks," Public Transport, Springer, vol. 9(1), pages 437-461, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziqin Lan & Zixuan Zhang & Jiatao Chen & Ming Cai, 2024. "Inferring alighting bus stops from smart card data combined with cellular signaling data," Transportation, Springer, vol. 51(4), pages 1433-1465, August.
    2. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hainan Huang & Yi Lin & Jiancheng Weng & Jian Rong & Xiaoming Liu, 2018. "Identification of Inelastic Subway Trips Based on Weekly Station Sequence Data: An Example from the Beijing Subway," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    2. Filip Covic & Stefan Voß, 2019. "Interoperable smart card data management in public mass transit," Public Transport, Springer, vol. 11(3), pages 523-548, October.
    3. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
    4. Amato, Umberto & Antoniadis, Anestis & De Feis, Italia & Goude, Yannig & Lagache, Audrey, 2021. "Forecasting high resolution electricity demand data with additive models including smooth and jagged components," International Journal of Forecasting, Elsevier, vol. 37(1), pages 171-185.
    5. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
    6. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "Bitcoin: Like a Satellite or Always Hardcore? A Core-Satellite Identification in the Cryptocurrency Market," Papers 2105.12336, arXiv.org.
    7. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    8. Yangchen Di & Mingyue Lu & Min Chen & Zhangjian Chen & Zaiyang Ma & Manzhu Yu, 2022. "A quantitative method for the similarity assessment of typhoon tracks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 587-602, May.
    9. David C Maré & Jacques Poot, 2022. "Accounting for social difference when measuring cultural diversity," Working Papers 22_04, Motu Economic and Public Policy Research.
    10. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    11. Vinicius M. Netto & Joao Meirelles & Fabiano L. Ribeiro, 2017. "Social Interaction and the City: The Effect of Space on the Reduction of Entropy," Complexity, Hindawi, vol. 2017, pages 1-16, August.
    12. Hiroaki Nishiuchi & Yasuyuki Kobayashi & Tomoyuki Todoroki & Tomoya Kawasaki, 2018. "Impact analysis of reductions in tram services in rural areas in Japan using smart card data," Public Transport, Springer, vol. 10(2), pages 291-309, August.
    13. Sewmini Jayatilake & Jonathan M. Bunker & Ashish Bhaskar & Marc Miska, 2021. "Time–space analysis to evaluate cell-based quality of service in bus rapid transit station platforms through passenger-specific area," Public Transport, Springer, vol. 13(2), pages 395-427, June.
    14. Qingru Zou & Xiangming Yao & Peng Zhao & Heng Wei & Hui Ren, 2018. "Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway," Transportation, Springer, vol. 45(3), pages 919-944, May.
    15. Lee, Minseo & Sohn, Keemin, 2015. "Inferring the route-use patterns of metro passengers based only on travel-time data within a Bayesian framework using a reversible-jump Markov chain Monte Carlo (MCMC) simulation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 1-17.
    16. De Zhao & Wei Wang & Amber Woodburn & Megan S. Ryerson, 2017. "Isolating high-priority metro and feeder bus transfers using smart card data," Transportation, Springer, vol. 44(6), pages 1535-1554, November.
    17. Jie Huang & David Levinson & Jiaoe Wang & Haitao Jin, 2019. "Job-worker spatial dynamics in Beijing: Insights from Smart Card Data," Working Papers 2019-01, University of Minnesota: Nexus Research Group.
    18. Yuriy Royko & Yevhen Fornalchyk & Eugeniusz Koda & Ivan Kernytskyy & Oleh Hrytsun & Romana Bura & Piotr Osinski & Anna Markiewicz & Tomasz Wierzbicki & Ruslan Barabash & Ruslan Humenuyk & Pavlo Polyan, 2023. "Public Transport Prioritization and Descriptive Criteria-Based Urban Sections Classification on Arterial Streets," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    19. Beste Hamiye Beyaztas & Ufuk Beyaztas & Soutir Bandyopadhyay & Wei-Min Huang, 2018. "New and Fast Block Bootstrap-Based Prediction Intervals for GARCH(1,1) Process with Application to Exchange Rates," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 168-194, February.
    20. Xiang Li & Qipeng Yan & Yafeng Ma & Chen Luo, 2023. "Spatially Varying Impacts of Built Environment on Transfer Ridership of Metro and Bus Systems," Sustainability, MDPI, vol. 15(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:13:y:2021:i:3:d:10.1007_s12469-021-00274-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.