IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v87y2022i2d10.1007_s11336-021-09829-3.html
   My bibliography  Save this article

Control Theory Forecasts of Optimal Training Dosage to Facilitate Children’s Arithmetic Learning in a Digital Educational Application

Author

Listed:
  • Sy-Miin Chow

    (The Pennsylvania State University)

  • Jungmin Lee

    (The Pennsylvania State University)

  • Abe D. Hofman

    (University of Amsterdam)

  • Han L. J. Maas

    (University of Amsterdam)

  • Dennis K. Pearl

    (The Pennsylvania State University)

  • Peter C. M. Molenaar

    (The Pennsylvania State University)

Abstract

Education can be viewed as a control theory problem in which students seek ongoing exogenous input—either through traditional classroom teaching or other alternative training resources—to minimize the discrepancies between their actual and target (reference) performance levels. Using illustrative data from $$n=784$$ n = 784 Dutch elementary school students as measured using the Math Garden, a web-based computer adaptive practice and monitoring system, we simulate and evaluate the outcomes of using off-line and finite memory linear quadratic controllers with constraintsto forecast students’ optimal training durations. By integrating population standards with each student’s own latent change information, we demonstrate that adoption of the control theory-guided, person- and time-specific training dosages could yield increased training benefits at reduced costs compared to students’ actual observed training durations, and a fixed-duration training scheme. The control theory approach also outperforms a linear scheme that provides training recommendations based on observed scores under noisy and the presence of missing data. Design-related issues such as ways to determine the penalty cost of input administration and the size of the control horizon window are addressed through a series of illustrative and empirically (Math Garden) motivated simulations.

Suggested Citation

  • Sy-Miin Chow & Jungmin Lee & Abe D. Hofman & Han L. J. Maas & Dennis K. Pearl & Peter C. M. Molenaar, 2022. "Control Theory Forecasts of Optimal Training Dosage to Facilitate Children’s Arithmetic Learning in a Digital Educational Application," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 559-592, June.
  • Handle: RePEc:spr:psycho:v:87:y:2022:i:2:d:10.1007_s11336-021-09829-3
    DOI: 10.1007/s11336-021-09829-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09829-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09829-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    2. Sy-Miin Chow & Guangjian Zhang, 2013. "Nonlinear Regime-Switching State-Space (RSSS) Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 740-768, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter F. Halpin & Kathleen Gates & Siwei Liu, 2022. "Guest Editors’ Introduction to the Special Issue on Forecasting with Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 373-375, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sy-Miin Chow & Lu Ou & Arridhana Ciptadi & Emily B. Prince & Dongjun You & Michael D. Hunter & James M. Rehg & Agata Rozga & Daniel S. Messinger, 2018. "Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 476-510, June.
    2. Sy-Miin Chow & Zhaohua Lu & Andrew Sherwood & Hongtu Zhu, 2016. "Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation–Maximization (SAEM) Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 102-134, March.
    3. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    4. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    5. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    6. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    7. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    8. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    9. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    10. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    11. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    12. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    13. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    14. repec:spo:wpmain:info:hdl:2441/1904 is not listed on IDEAS
    15. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    16. Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021. "Predicting benchmarked US state employment data in real time," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.
    17. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    18. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    19. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    20. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    21. Bógalo, Juan & Poncela, Pilar & Senra, Eva, 2017. "Automatic Signal Extraction for Stationary and Non-Stationary Time Series by Circulant SSA," MPRA Paper 76023, University Library of Munich, Germany.
    22. Önundur Páll Ragnarsson & Jón Magnús Hannesson & Loftur Hreinsson, 2019. "Financial cycles as early warning indicators - Lessons from the Nordic region," Economics wp80, Department of Economics, Central bank of Iceland.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:2:d:10.1007_s11336-021-09829-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.