IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v87y2022i2d10.1007_s11336-021-09814-w.html
   My bibliography  Save this article

Better Information From Survey Data: Filtering Out State Dependence Using Eye-Tracking Data

Author

Listed:
  • Joachim Büschken

    (Catholic University of Eichstätt-Ingolstadt)

  • Ulf Böckenholt

    (Northwestern University)

  • Thomas Otter

    (Goethe University)

  • Daniel Stengel

    (GfK)

Abstract

Ideally, survey respondents read and understand survey instructions, questions, and response scales, and provide answers that carefully reflect their beliefs, attitudes, or knowledge. However, respondents may also arrive at their responses using cues or heuristics that facilitate the production of a response, but diminish the targeted information content. We use eye-tracking data as covariates in a Bayesian switching-mixture model to identify different response behaviors at the item–respondent level. The model distinguishes response behaviors that are predominantly influenced either positively or negatively by the previous response, and responses that reflect respondents’ preexisting knowledge and experiences of interest. We find that controlling for multiple types of adaptive response behaviors allows for a more informative analysis of survey data and respondents.

Suggested Citation

  • Joachim Büschken & Ulf Böckenholt & Thomas Otter & Daniel Stengel, 2022. "Better Information From Survey Data: Filtering Out State Dependence Using Eye-Tracking Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 620-665, June.
  • Handle: RePEc:spr:psycho:v:87:y:2022:i:2:d:10.1007_s11336-021-09814-w
    DOI: 10.1007/s11336-021-09814-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09814-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09814-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joachim Büschken & Thomas Otter & Greg M. Allenby, 2013. "The Dimensionality of Customer Satisfaction Survey Responses and Implications for Driver Analysis," Marketing Science, INFORMS, vol. 32(4), pages 533-553, July.
    2. Pasquale Valentini & Tonio Battista & Stefano Antonio Gattone, 2011. "Heterogeneity Measures in Customer Satisfaction Analysis," Journal of Classification, Springer;The Classification Society, vol. 28(1), pages 38-52, April.
    3. Eric Bradlow & Howard Wainer & Xiaohui Wang, 1999. "A Bayesian random effects model for testlets," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 153-168, June.
    4. Kaminska, Olena & Foulsham, Tom, 2013. "Understanding sources of social desirability bias in different modes: evidence from eye-tracking," ISER Working Paper Series 2013-04, Institute for Social and Economic Research.
    5. Savannah Wei Shi & Michel Wedel & F. G. M. (Rik) Pieters, 2013. "Information Acquisition During Online Decision Making: A Model-Based Exploration Using Eye-Tracking Data," Management Science, INFORMS, vol. 59(5), pages 1009-1026, May.
    6. Fonseca, Jaime R.S., 2009. "Customer satisfaction study via a latent segment model," Journal of Retailing and Consumer Services, Elsevier, vol. 16(5), pages 352-359.
    7. Martijn G. de Jong & Donald R. Lehmann & Oded Netzer, 2012. "State-Dependence Effects in Surveys," Marketing Science, INFORMS, vol. 31(5), pages 838-854, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arpan Kumar Kar & Amit Kumar Kushwaha, 2023. "Facilitators and Barriers of Artificial Intelligence Adoption in Business – Insights from Opinions Using Big Data Analytics," Information Systems Frontiers, Springer, vol. 25(4), pages 1351-1374, August.
    2. Chavez, Daniel E. & Palma, Marco A. & Nayga, Rodolfo M. & Mjelde, James W., 2020. "Product availability in discrete choice experiments with private goods," Journal of choice modelling, Elsevier, vol. 36(C).
    3. Quinn N. Lathrop & Ying Cheng, 2017. "Item Cloning Variation and the Impact on the Parameters of Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 245-263, March.
    4. Martijn G. de Jong & Jan-Benedict E. M. Steenkamp & Bernard P. Veldkamp, 2009. "A Model for the Construction of Country-Specific Yet Internationally Comparable Short-Form Marketing Scales," Marketing Science, INFORMS, vol. 28(4), pages 674-689, 07-08.
    5. Huddleston, Patricia T. & Behe, Bridget K. & Driesener, Carl & Minahan, S., 2018. "Inside-outside: Using eye-tracking to investigate search-choice processes in the retail environment," Journal of Retailing and Consumer Services, Elsevier, vol. 43(C), pages 85-93.
    6. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    7. Fischbacher, Urs & Hausfeld, Jan & Renerte, Baiba, 2022. "Strategic incentives undermine gaze as a signal of prosocial motives," Games and Economic Behavior, Elsevier, vol. 136(C), pages 63-91.
    8. Xin Xu & Guanhua Fang & Jinxin Guo & Zhiliang Ying & Susu Zhang, 2024. "Diagnostic Classification Models for Testlets: Methods and Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 851-876, September.
    9. Frederick Callaway & Antonio Rangel & Thomas L Griffiths, 2021. "Fixation patterns in simple choice reflect optimal information sampling," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-29, March.
    10. Sandorf, Erlend Dancke & Crastes dit Sourd, Romain & Mahieu, Pierre-Alexandre, 2018. "The effect of attribute-alternative matrix displays on preferences and processing strategies," Journal of choice modelling, Elsevier, vol. 29(C), pages 113-132.
    11. Michela Gnaldi & Silvia Bacci & Thiemo Kunze & Samuel Greiff, 2020. "Students’ Complex Problem Solving Profiles," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 469-501, June.
    12. Fonseca, Jaime R.S., 2014. "e-banking culture: A comparison of EU 27 countries and Portuguese case in the EU 27 retail banking context," Journal of Retailing and Consumer Services, Elsevier, vol. 21(5), pages 708-716.
    13. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    14. Peida Zhan & Hong Jiao & Dandan Liao & Feiming Li, 2019. "A Longitudinal Higher-Order Diagnostic Classification Model," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 251-281, June.
    15. Allenby, Greg M., 2017. "Structural forecasts for marketing data," International Journal of Forecasting, Elsevier, vol. 33(2), pages 433-441.
    16. repec:jss:jstsof:36:c01 is not listed on IDEAS
    17. Chavez, Daniel E. & Palma, Marco A. & Nayga Jr., Rodolfo M., 2017. "When does real become consequential in non-hypothetical choice experiments?," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266327, Southern Agricultural Economics Association.
    18. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2018. "Robust Measurement via A Fused Latent and Graphical Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 538-562, September.
    19. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    20. Zhang, Yifan & Fong, Duncan K.H. & DeSarbo, Wayne S., 2021. "A generalized ordinal finite mixture regression model for market segmentation," International Journal of Research in Marketing, Elsevier, vol. 38(4), pages 1055-1072.
    21. Signe Waechter & Bernadette Sütterlin & Michael Siegrist, 2017. "Decision-Making Strategies for the Choice of Energy-friendly Products," Journal of Consumer Policy, Springer, vol. 40(1), pages 81-103, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:2:d:10.1007_s11336-021-09814-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.