Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes
Author
Abstract
Suggested Citation
DOI: 10.1007/s11336-020-09729-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zellner, Arnold & Rossi, Peter E., 1984. "Bayesian analysis of dichotomous quantal response models," Journal of Econometrics, Elsevier, vol. 25(3), pages 365-393, July.
- Scheuren, Fritz, 2005. "Multiple Imputation: How It Began and Continues," The American Statistician, American Statistical Association, vol. 59, pages 315-319, November.
- van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
- Stuart R. Lipsitz & Nan M. Laird & David P. Harrington, 1992. "A Three‐Stage Estimator for Studies with Repeated and Possibly Missing Binary Outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 203-213, March.
- Minzhi Liu & Jeremy M. G. Taylor & Thomas R. Belin, 2000. "Multiple Imputation and Posterior Simulation for Multivariate Missing Data in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 56(4), pages 1157-1163, December.
- Beunckens, Caroline & Sotto, Cristina & Molenberghs, Geert, 2008. "A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1533-1548, January.
- Horton N. J. & Lipsitz S. R., 2001. "Multiple Imputation in Practice: Comparison of Software Packages for Regression Models With Missing Variables," The American Statistician, American Statistical Association, vol. 55, pages 244-254, August.
- Stuart R. Lipsitz & Geert Molenberghs & Garrett M. Fitzmaurice & Joseph Ibrahim, 2000. "GEE with Gaussian Estimation of the Correlations When Data Are Incomplete," Biometrics, The International Biometric Society, vol. 56(2), pages 528-536, June.
- Horton N.J. & Lipsitz S.R. & Parzen M., 2003. "A Potential for Bias When Rounding in Multiple Imputation," The American Statistician, American Statistical Association, vol. 57, pages 229-232, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Daniel Rodriguez & Ryan Verma & Juliana Upchurch, 2024. "Comparing the Relative Efficacy of Generalized Estimating Equations, Latent Growth Curve Modeling, and Area Under the Curve with a Repeated Measures Discrete Ordinal Outcome Variable," Stats, MDPI, vol. 7(4), pages 1-13, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christian Seiler, 2013. "Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 52.
- Kristian Kleinke & Mark Stemmler & Jost Reinecke & Friedrich Lösel, 2011. "Efficient ways to impute incomplete panel data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 351-373, December.
- Geronimi, J. & Saporta, G., 2017. "Variable selection for multiply-imputed data with penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 103-114.
- Humera Razzak & Christian Heumann, 2019. "Hybrid Multiple Imputation In A Large Scale Complex Survey," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 33-58, December.
- Razzak Humera & Heumann Christian, 2019. "Hybrid Multiple Imputation In A Large Scale Complex Survey," Statistics in Transition New Series, Statistics Poland, vol. 20(4), pages 33-58, December.
- Nengsih Titin Agustin & Bertrand Frédéric & Maumy-Bertrand Myriam & Meyer Nicolas, 2019. "Determining the number of components in PLS regression on incomplete data set," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(6), pages 1-28, December.
- Kristian Kleinke & Jost Reinecke & Cornelia Weins, 2021. "The development of delinquency during adolescence: a comparison of missing data techniques revisited," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(3), pages 877-895, June.
- Garrett M. Fitzmaurice & Stuart R. Lipsitz & Geert Molenberghs & Joseph G. Ibrahim, 2001. "Bias in Estimating Association Parameters for Longitudinal Binary Responses with Drop‐Outs," Biometrics, The International Biometric Society, vol. 57(1), pages 15-21, March.
- Hua Yun Chen & Hui Xie & Yi Qian, 2011. "Multiple Imputation for Missing Values through Conditional Semiparametric Odds Ratio Models," Biometrics, The International Biometric Society, vol. 67(3), pages 799-809, September.
- Landau, E.R. & Raniti, M.B. & Blake, M. & Waloszek, J.M. & Blake, L. & Simmons, J.G. & Schwartz, O. & Murray, G. & Trinder, J. & Allen, N.B. & Byrne, M.L., 2021. "The ratio of morning cortisol to CRP prospectively predicts first-onset depression in at-risk adolescents," Social Science & Medicine, Elsevier, vol. 281(C).
- Kristian Kleinke & Jost Reinecke, 2013. "Multiple imputation of incomplete zero-inflated count data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 311-336, August.
- repec:jss:jstsof:45:i03 is not listed on IDEAS
- Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
- Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
- Paul T. von Hippel, 2013. "Should a Normal Imputation Model be Modified to Impute Skewed Variables?," Sociological Methods & Research, , vol. 42(1), pages 105-138, February.
- Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
- Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
- Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
- Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
- Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
- Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
More about this item
Keywords
fully conditional specification; generalized estimating equations; missing completely at random; missing at random; multivariate normal;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:85:y:2020:i:4:d:10.1007_s11336-020-09729-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.