IDEAS home Printed from https://ideas.repec.org/a/eee/socmed/v281y2021ics0277953621004305.html
   My bibliography  Save this article

The ratio of morning cortisol to CRP prospectively predicts first-onset depression in at-risk adolescents

Author

Listed:
  • Landau, E.R.
  • Raniti, M.B.
  • Blake, M.
  • Waloszek, J.M.
  • Blake, L.
  • Simmons, J.G.
  • Schwartz, O.
  • Murray, G.
  • Trinder, J.
  • Allen, N.B.
  • Byrne, M.L.

Abstract

Early-onset adolescent depression is related to poor prognosis and a range of psychiatric and medical comorbidities later in life, making the identification of a priori risk factors for depression highly important. Increasingly, dysregulated levels of immune and neuroendocrine markers, such as C-reactive protein (CRP) and cortisol, have been demonstrated as both precursors to and consequences of depression. However, longitudinal research with adolescent populations is limited and demonstrates mixed immuno-endocrine-depression links.

Suggested Citation

  • Landau, E.R. & Raniti, M.B. & Blake, M. & Waloszek, J.M. & Blake, L. & Simmons, J.G. & Schwartz, O. & Murray, G. & Trinder, J. & Allen, N.B. & Byrne, M.L., 2021. "The ratio of morning cortisol to CRP prospectively predicts first-onset depression in at-risk adolescents," Social Science & Medicine, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:socmed:v:281:y:2021:i:c:s0277953621004305
    DOI: 10.1016/j.socscimed.2021.114098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0277953621004305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.socscimed.2021.114098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Horton N. J. & Lipsitz S. R., 2001. "Multiple Imputation in Practice: Comparison of Software Packages for Regression Models With Missing Variables," The American Statistician, American Statistical Association, vol. 55, pages 244-254, August.
    3. Rubin, Donald B, 1986. "Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 87-94, January.
    4. Lyudmila V. Borovikova & Svetlana Ivanova & Minghuang Zhang & Huan Yang & Galina I. Botchkina & Linda R. Watkins & Haichao Wang & Naji Abumrad & John W. Eaton & Kevin J. Tracey, 2000. "Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin," Nature, Nature, vol. 405(6785), pages 458-462, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristian Kleinke & Mark Stemmler & Jost Reinecke & Friedrich Lösel, 2011. "Efficient ways to impute incomplete panel data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 351-373, December.
    2. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    3. Joost R. Ginkel, 2020. "Standardized Regression Coefficients and Newly Proposed Estimators for $${R}^{{2}}$$R2 in Multiply Imputed Data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 185-205, March.
    4. Gowri Gopalakrishna & Gerben ter Riet & Gerko Vink & Ineke Stoop & Jelte M Wicherts & Lex M Bouter, 2022. "Prevalence of questionable research practices, research misconduct and their potential explanatory factors: A survey among academic researchers in The Netherlands," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-16, February.
    5. Brunori, Paolo & Salas-Rojo, Pedro & Verme, Paolo, 2022. "Estimating Inequality with Missing Incomes," GLO Discussion Paper Series 1138, Global Labor Organization (GLO).
    6. Stuart R. Lipsitz & Garrett M. Fitzmaurice & Roger D. Weiss, 2020. "Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 890-904, December.
    7. Christian Seiler, 2013. "Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 52.
    8. Saeideh Kamgar & Florian Meinfelder & Ralf Münnich & Hamidreza Navvabpour, 2020. "Estimation within the new integrated system of household surveys in Germany," Statistical Papers, Springer, vol. 61(5), pages 2091-2117, October.
    9. Geronimi, J. & Saporta, G., 2017. "Variable selection for multiply-imputed data with penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 103-114.
    10. Jana Emmenegger & Ralf Münnich & Jannik Schaller, 2022. "Evaluating Data Fusion Methods to Improve Income Modelling," Research Papers in Economics 2022-03, University of Trier, Department of Economics.
    11. Nengsih Titin Agustin & Bertrand Frédéric & Maumy-Bertrand Myriam & Meyer Nicolas, 2019. "Determining the number of components in PLS regression on incomplete data set," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(6), pages 1-28, December.
    12. Andrew Briggs & Taane Clark & Jane Wolstenholme & Philip Clarke, 2003. "Missing.... presumed at random: cost‐analysis of incomplete data," Health Economics, John Wiley & Sons, Ltd., vol. 12(5), pages 377-392, May.
    13. Gessendorfer Jonathan & Beste Jonas & Drechsler Jörg & Sakshaug Joseph W., 2018. "Statistical Matching as a Supplement to Record Linkage: A Valuable Method to Tackle Nonconsent Bias?," Journal of Official Statistics, Sciendo, vol. 34(4), pages 909-933, December.
    14. Kristian Kleinke & Jost Reinecke, 2013. "Multiple imputation of incomplete zero-inflated count data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 311-336, August.
    15. repec:jss:jstsof:45:i03 is not listed on IDEAS
    16. Mehboob Ali & Göran Kauermann, 2021. "A split questionnaire survey design in the context of statistical matching," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1219-1236, October.
    17. Speidel, Matthias & Drechsler, Jörg & Jolani, Shahab, 2018. "R package hmi: a convenient tool for hierarchical multiple imputation and beyond," IAB-Discussion Paper 201816, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    18. Claramunt González, Juan & van Delden, Arnout & de Waal, Ton, 2023. "Assessment of the effect of constraints in a new multivariate mixed method for statistical matching," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    19. Mingyang Cai & Gerko Vink, 2022. "A note on imputing squares via polynomial combination approach," Computational Statistics, Springer, vol. 37(5), pages 2185-2201, November.
    20. Shu Yang & Jae Kwang Kim, 2020. "Asymptotic theory and inference of predictive mean matching imputation using a superpopulation model framework," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 839-861, September.
    21. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:281:y:2021:i:c:s0277953621004305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.