IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v57y2001i1p15-21.html
   My bibliography  Save this article

Bias in Estimating Association Parameters for Longitudinal Binary Responses with Drop‐Outs

Author

Listed:
  • Garrett M. Fitzmaurice
  • Stuart R. Lipsitz
  • Geert Molenberghs
  • Joseph G. Ibrahim

Abstract

Summary. This paper considers the impact of bias in the estimation of the association parameters for longitudinal binary responses when there are drop‐outs. A number of different estimating equation approaches are considered for the case where drop‐out cannot be assumed to be a completely random process. In particular, standard generalized estimating equations (GEE), GEE based on conditional residuals, GEE based on multivariate normal estimating equations for the covariance matrix, and second‐order estimating equations (GEEZ) are examined. These different GEE estimators are compared in terms of finite sample and asymptotic bias under a variety of drop‐out processes. Finally, the relationship between bias in the estimation of the association parameters and bias in the estimation of the mean parameters is explored.

Suggested Citation

  • Garrett M. Fitzmaurice & Stuart R. Lipsitz & Geert Molenberghs & Joseph G. Ibrahim, 2001. "Bias in Estimating Association Parameters for Longitudinal Binary Responses with Drop‐Outs," Biometrics, The International Biometric Society, vol. 57(1), pages 15-21, March.
  • Handle: RePEc:bla:biomet:v:57:y:2001:i:1:p:15-21
    DOI: 10.1111/j.0006-341X.2001.00015.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0006-341X.2001.00015.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0006-341X.2001.00015.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stuart R. Lipsitz & Nan M. Laird & David P. Harrington, 1992. "A Three‐Stage Estimator for Studies with Repeated and Possibly Missing Binary Outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 203-213, March.
    2. D. R. Cox, 1972. "The Analysis of Multivariate Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 113-120, June.
    3. Stuart R. Lipsitz & Geert Molenberghs & Garrett M. Fitzmaurice & Joseph Ibrahim, 2000. "GEE with Gaussian Estimation of the Correlations When Data Are Incomplete," Biometrics, The International Biometric Society, vol. 56(2), pages 528-536, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.
    2. Fang, Fang & Shao, Jun, 2016. "Iterated imputation estimation for generalized linear models with missing response and covariate values," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 111-123.
    3. Joseph Ibrahim & Geert Molenberghs, 2009. "Missing data methods in longitudinal studies: a review," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 1-43, May.
    4. Stuart R. Lipsitz & Garrett M. Fitzmaurice & Joseph G. Ibrahim & Debajyoti Sinha & Michael Parzen & Steven Lipshultz, 2009. "Joint generalized estimating equations for multivariate longitudinal binary outcomes with missing data: an application to acquired immune deficiency syndrome data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 3-20, January.
    5. Andrew Copas & Shaun Seaman, 2010. "Bias from the use of generalized estimating equations to analyze incomplete longitudinal binary data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 911-922.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stuart R. Lipsitz & Garrett M. Fitzmaurice & Joseph G. Ibrahim & Debajyoti Sinha & Michael Parzen & Steven Lipshultz, 2009. "Joint generalized estimating equations for multivariate longitudinal binary outcomes with missing data: an application to acquired immune deficiency syndrome data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 3-20, January.
    2. Stuart R. Lipsitz & Garrett M. Fitzmaurice & Roger D. Weiss, 2020. "Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 890-904, December.
    3. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    4. Brown, Timothy T. & Lee, Jadyn & Markarian, Sione, 2024. "The causal impact of shared decision making on pain outcomes: Gender matters," Social Science & Medicine, Elsevier, vol. 355(C).
    5. Koen Bel & Dennis Fok & Richard Paap, 2018. "Parameter estimation in multivariate logit models with many binary choices," Econometric Reviews, Taylor & Francis Journals, vol. 37(5), pages 534-550, May.
    6. Bel, K. & Paap, R., 2014. "A Multivariate Model for Multinomial Choices," Econometric Institute Research Papers EI 2014-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Honig, Benson & Samuelsson, Mikael, 2021. "Business planning by intrapreneurs and entrepreneurs under environmental uncertainty and institutional pressure," Technovation, Elsevier, vol. 99(C).
    8. Kwak, Kyuseop & Duvvuri, Sri Devi & Russell, Gary J., 2015. "An Analysis of Assortment Choice in Grocery Retailing," Journal of Retailing, Elsevier, vol. 91(1), pages 19-33.
    9. Di Tommaso, M.L. & Weeks, M., 2000. "Decision Structures and Discrete Choices: An Application to Labour Market Participation and Fertility," Cambridge Working Papers in Economics 0009, Faculty of Economics, University of Cambridge.
    10. Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
    11. Bonnet, Céline & Richards, Timothy J., 2016. "Models of Consumer Demand for Differentiated Products," TSE Working Papers 16-741, Toulouse School of Economics (TSE).
    12. Hao Bai & Yuan Zhong & Xin Gao & Wei Xu, 2020. "Multivariate Mixed Response Model with Pairwise Composite-Likelihood Method," Stats, MDPI, vol. 3(3), pages 1-18, July.
    13. Bartolucci, Francesco & Pigini, Claudia, 2017. "cquad: An R and Stata Package for Conditional Maximum Likelihood Estimation of Dynamic Binary Panel Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i07).
    14. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    15. Francesco Bartolucci & Claudia Pigini, 2018. "Partial effects estimation for fixed-effects logit panel data models," Working Papers 431, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    16. Richards, Timothy J. & Hamilton, Stephen F. & Yonezawa, Koichi, 2018. "Retail Market Power in a Shopping Basket Model of Supermarket Competition," Journal of Retailing, Elsevier, vol. 94(3), pages 328-342.
    17. Daniel L. McFadden, 1976. "Quantal Choice Analysis: A Survey," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 363-390, National Bureau of Economic Research, Inc.
    18. Hanemann, W. Michael & Kanninen, Barbara, 1996. "The Statistical Analysis Of Discrete-Response Cv Data," CUDARE Working Papers 25022, University of California, Berkeley, Department of Agricultural and Resource Economics.
    19. Timothy Tyler Brown & Juan Pablo Atal, 2019. "How robust are reference pricing studies on outpatient medical procedures? Three different preprocessing techniques applied to difference‐in differences," Health Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 280-298, February.
    20. Ivy Jansen & Geert Molenberghs & Marc Aerts & Herbert Thijs & Kristel Van Steen, 2003. "A Local Influence Approach Applied to Binary Data from a Psychiatric Study," Biometrics, The International Biometric Society, vol. 59(2), pages 410-419, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:57:y:2001:i:1:p:15-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.