IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v85y2020i1d10.1007_s11336-019-09691-4.html
   My bibliography  Save this article

Multilevel Heterogeneous Factor Analysis and Application to Ecological Momentary Assessment

Author

Listed:
  • Junhao Pan

    (Sun Yat-sen University)

  • Edward Haksing Ip

    (Wake Forest School of Medicine)

  • Laurette Dubé

    (McGill University)

Abstract

Ansari et al. (Psychometrika 67:49–77, 2002) applied a multilevel heterogeneous model for confirmatory factor analysis to repeated measurements on individuals. While the mean and factor loadings in this model vary across individuals, its factor structure is invariant. Allowing the individual-level residuals to be correlated is an important means to alleviate the restriction imposed by configural invariance. We relax the diagonality assumption of residual covariance matrix and estimate it using a formal Bayesian Lasso method. The approach improves goodness of fit and avoids ad hoc one-at-a-time manipulation of entries in the covariance matrix via modification indexes. We illustrate the approach using simulation studies and real data from an ecological momentary assessment.

Suggested Citation

  • Junhao Pan & Edward Haksing Ip & Laurette Dubé, 2020. "Multilevel Heterogeneous Factor Analysis and Application to Ecological Momentary Assessment," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 75-100, March.
  • Handle: RePEc:spr:psycho:v:85:y:2020:i:1:d:10.1007_s11336-019-09691-4
    DOI: 10.1007/s11336-019-09691-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-019-09691-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-019-09691-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Xin-Yuan & Tang, Nian-Sheng & Chow, Sy-Miin, 2012. "A Bayesian approach for generalized random coefficient structural equation models for longitudinal data with adjacent time effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4190-4203.
    2. Chris Hans, 2009. "Bayesian lasso regression," Biometrika, Biometrika Trust, vol. 96(4), pages 835-845.
    3. Asim Ansari & Kamel Jedidi & Laurette Dube, 2002. "Heterogeneous factor analysis models: A bayesian approach," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 49-77, March.
    4. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    5. O’Malley, A. James & Zaslavsky, Alan M., 2008. "Domain-Level Covariance Analysis for Multilevel Survey Data With Structured Nonresponse," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1405-1418.
    6. Yiu-Fai Yung, 1997. "Finite mixtures in confirmatory factor-analysis models," Psychometrika, Springer;The Psychometric Society, vol. 62(3), pages 297-330, September.
    7. Peter Molenaar, 1985. "A dynamic factor model for the analysis of multivariate time series," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 181-202, June.
    8. N. Longford & B. Muthén, 1992. "Factor analysis for clustered observations," Psychometrika, Springer;The Psychometric Society, vol. 57(4), pages 581-597, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    2. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    3. Philip Kostov & Thankom Arun & Samuel Annim, 2014. "Financial Services to the Unbanked: the case of the Mzansi intervention in South Africa," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 8(2), June.
    4. Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
    5. Sy-Miin Chow & Guangjian Zhang, 2013. "Nonlinear Regime-Switching State-Space (RSSS) Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 740-768, October.
    6. Asim Ansari & Kamel Jedidi & Sharan Jagpal, 2000. "A Hierarchical Bayesian Methodology for Treating Heterogeneity in Structural Equation Models," Marketing Science, INFORMS, vol. 19(4), pages 328-347, August.
    7. Daniel F. Schmidt & Enes Makalic, 2013. "Estimation of stationary autoregressive models with the Bayesian LASSO," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 517-531, September.
    8. Minerva Mukhopadhyay & Tapas Samanta, 2017. "A mixture of g-priors for variable selection when the number of regressors grows with the sample size," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 377-404, June.
    9. Bergersen Linn Cecilie & Glad Ingrid K. & Lyng Heidi, 2011. "Weighted Lasso with Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-29, August.
    10. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    11. Gelper, Sarah & Stremersch, Stefan, 2014. "Variable selection in international diffusion models," International Journal of Research in Marketing, Elsevier, vol. 31(4), pages 356-367.
    12. Gehong Zhang & Junming Li & Sijin Li & Yang Wang, 2018. "Exploring Spatial Trends and Influencing Factors for Gastric Cancer Based on Bayesian Statistics: A Case Study of Shanxi, China," IJERPH, MDPI, vol. 15(9), pages 1-17, August.
    13. Charles Miller & Benjamin Barber & Shuvo Bakar, 2018. "Indoctrination and coercion in agent motivation: Evidence from Nazi Germany," Rationality and Society, , vol. 30(2), pages 189-219, May.
    14. Baragatti, M. & Pommeret, D., 2012. "A study of variable selection using g-prior distribution with ridge parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1920-1934.
    15. Steven Andrew Culpepper & Trevor Park, 2017. "Bayesian Estimation of Multivariate Latent Regression Models: Gauss Versus Laplace," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 591-616, October.
    16. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    17. Gallant, A. Ronald & Hong, Han & Leung, Michael P. & Li, Jessie, 2022. "Constrained estimation using penalization and MCMC," Journal of Econometrics, Elsevier, vol. 228(1), pages 85-106.
    18. Nicholas G. Polson & James G. Scott, 2016. "Mixtures, envelopes and hierarchical duality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 701-727, September.
    19. Paolo Onorati & Brunero Liseo, 2022. "Bayesian Hierarchical Copula Models with a Dirichlet–Laplace Prior," Stats, MDPI, vol. 5(4), pages 1-17, November.
    20. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:85:y:2020:i:1:d:10.1007_s11336-019-09691-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.