A mixture of g-priors for variable selection when the number of regressors grows with the sample size
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-016-0516-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jinchi Lv & Jun S. Liu, 2014. "Model selection principles in misspecified models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 141-167, January.
- Ley, Eduardo & Steel, Mark F.J., 2012.
"Mixtures of g-priors for Bayesian model averaging with economic applications,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
- Ley, Eduardo & Steel, Mark F. J., 2010. "Mixtures of g-priors for Bayesian model averaging with economic applications," MPRA Paper 26941, University Library of Munich, Germany.
- Ley, Eduardo & Steel, Mark F.J., 2011. "Mixtures of g-priors for bayesian model averaging with economic applications," DES - Working Papers. Statistics and Econometrics. WS ws112116, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Ley, Eduardo & Steel, Mark F. J., 2011. "Mixtures of g-priors for Bayesian model averaging with economic applications," MPRA Paper 36817, University Library of Munich, Germany.
- Ley, Eduardo & Steel, Mark F.J., 2011. "Mixtures of g-priors for Bayesian Model Averaging with economic application," Policy Research Working Paper Series 5732, The World Bank.
- Chris Hans, 2009. "Bayesian lasso regression," Biometrika, Biometrika Trust, vol. 96(4), pages 835-845.
- Howard D. Bondell & Brian J. Reich, 2012. "Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1610-1624, December.
- M. J. Bayarri & G. García‐Donato, 2008. "Generalization of Jeffreys divergence‐based priors for Bayesian hypothesis testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 981-1003, November.
- Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001.
"Benchmark priors for Bayesian model averaging,"
Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
- Carmen Fernández & Eduardo Ley & Mark F. J. Steel, "undated". "Benchmark priors for Bayesian Model averaging," Working Papers 98-06, FEDEA.
- Carmen Fernandez & Eduardo Ley & Mark F J Steel, 1998. "Benchmark priors for Bayesian model averaging," Edinburgh School of Economics Discussion Paper Series 26, Edinburgh School of Economics, University of Edinburgh.
- Carmen Fernandez & Eduardo Ley & Mark F.J. Steel, 1998. "Benchmark Priors for Bayesian Model Averaging," Econometrics 9804001, University Library of Munich, Germany, revised 08 Oct 2001.
- Carmen Fernandez & Eduardo Ley & Mark F J Steel, 1998. "Benchmark priors for Bayesian model averaging," Edinburgh School of Economics Discussion Paper Series 66, Edinburgh School of Economics, University of Edinburgh.
- Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
- Liang, Feng & Paulo, Rui & Molina, German & Clyde, Merlise A. & Berger, Jim O., 2008. "Mixtures of g Priors for Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 410-423, March.
- Valen E. Johnson & David Rossell, 2012. "Bayesian Model Selection in High-Dimensional Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 649-660, June.
- Minerva Mukhopadhyay & Tapas Samanta & Arijit Chakrabarti, 2015. "On consistency and optimality of Bayesian variable selection based on $$g$$ g -prior in normal linear regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 963-997, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Paul Hofmarcher & Jesús Crespo Cuaresma & Bettina Grün & Kurt Hornik, 2015. "Last Night a Shrinkage Saved My Life: Economic Growth, Model Uncertainty and Correlated Regressors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 133-144, March.
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- Aart Kraay & Norikazu Tawara, 2013. "Can specific policy indicators identify reform priorities?," Journal of Economic Growth, Springer, vol. 18(3), pages 253-283, September.
- Rockey, James & Temple, Jonathan, 2016.
"Growth econometrics for agnostics and true believers,"
European Economic Review, Elsevier, vol. 81(C), pages 86-102.
- James Rockey & Jonathan Temple, 2015. "Growth Econometrics for Agnostics and True Believers," Bristol Economics Discussion Papers 15/656, School of Economics, University of Bristol, UK.
- Temple, Jonathan & Rockey, James, 2015. "Growth Econometrics for Agnostics and True Believers," CEPR Discussion Papers 10590, C.E.P.R. Discussion Papers.
- Korobilis, Dimitris, 2013.
"Hierarchical shrinkage priors for dynamic regressions with many predictors,"
International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
- Dimitris Korobilis, 2011. "Hierarchical Shrinkage Priors for Dynamic Regressions with Many Predictors," Working Paper series 21_11, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," MPRA Paper 30380, University Library of Munich, Germany.
- KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," LIDAM Discussion Papers CORE 2011021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
- Kourtellos, Andros & Marr, Christa & Tan, Chih Ming, 2016.
"Robust determinants of intergenerational mobility in the land of opportunity,"
European Economic Review, Elsevier, vol. 81(C), pages 132-147.
- Andros Kourtellos & Christa Marr & Chih Ming Tan, 2014. "Robust Determinants of Intergenerational Mobility in the Land of Opportunity," University of Cyprus Working Papers in Economics 07-2014, University of Cyprus Department of Economics.
- Andros Kourtellos & Christa Marr & Chih Ming Tan, 2014. "Robust Determinants of Intergenerational Mobility in the Land of Opportunity," Working Paper series 20_14, Rimini Centre for Economic Analysis.
- Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Fouskakis, Dimitris & Ntzoufras, Ioannis & Perrakis, Konstantinos, 2020. "Variations of power-expected-posterior priors in normal regression models," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
- Dimitris Korobilis, 2018.
"Machine Learning Macroeconometrics: A Primer,"
Working Paper series
18-30, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2018. "Machine Learning Macroeconometrics A Primer," Essex Finance Centre Working Papers 22666, University of Essex, Essex Business School.
- Baragatti, M. & Pommeret, D., 2012. "A study of variable selection using g-prior distribution with ridge parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1920-1934.
- Salimans, Tim, 2012.
"Variable selection and functional form uncertainty in cross-country growth regressions,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 267-280.
- Tim Salimans, 2011. "Variable Selection and Functional Form Uncertainty in Cross-Country Growth Regressions," Tinbergen Institute Discussion Papers 11-012/4, Tinbergen Institute.
- Andrew J. Womack & Luis León-Novelo & George Casella, 2014. "Inference From Intrinsic Bayes' Procedures Under Model Selection and Uncertainty," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1040-1053, September.
- Minerva Mukhopadhyay & Sourabh Bhattacharya, 2022. "Bayes factor asymptotics for variable selection in the Gaussian process framework," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 581-613, June.
- Leamer, Edward E., 2016. "S-values and Bayesian weighted all-subsets regressions," European Economic Review, Elsevier, vol. 81(C), pages 15-31.
- Bettina Grün & Paul Hofmarcher, 2021. "Identifying groups of determinants in Bayesian model averaging using Dirichlet process clustering," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1018-1045, September.
- David Kaplan, 2021. "On the Quantification of Model Uncertainty: A Bayesian Perspective," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 215-238, March.
- Crespo Cuaresma, Jesus & von Schweinitz, Gregor & Wendt, Katharina, 2019.
"On the empirics of reserve requirements and economic growth,"
Journal of Macroeconomics, Elsevier, vol. 60(C), pages 253-274.
- Crespo-Cuaresma, Jesus & Schweinitz, Gregor von & Wendt, Katharina, 2018. "On the empirics of reserve requirements and economic growth," IWH Discussion Papers 8/2018, Halle Institute for Economic Research (IWH).
- Jesus Crespo Cuaresma & Bettina Grün & Paul Hofmarcher & Stefan Humer & Mathias Moser, 2015.
"A Comprehensive Approach to Posterior Jointness Analysis in Bayesian Model Averaging Applications,"
Department of Economics Working Papers
wuwp193, Vienna University of Economics and Business, Department of Economics.
- Crespo Cuaresma, Jesus & Grün, Bettina & Hofmarcher, Paul & Humer, Stefan & Moser, Mathias, 2015. "A Comprehensive Approach to Posterior Jointness Analysis in Bayesian Model Averaging Applications," Department of Economics Working Paper Series 193, WU Vienna University of Economics and Business.
More about this item
Keywords
Model selection consistency; Misspecified models; General class of distributions of errors; Kullback–Leibler divergence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:26:y:2017:i:2:d:10.1007_s11749-016-0516-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.