IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v83y2018i1d10.1007_s11336-017-9590-9.html
   My bibliography  Save this article

A Generalized Speed–Accuracy Response Model for Dichotomous Items

Author

Listed:
  • Peter W. Rijn

    (ETS Global)

  • Usama S. Ali

    (Educational Testing Service
    South Valley University)

Abstract

We propose a generalization of the speed–accuracy response model (SARM) introduced by Maris and van der Maas (Psychometrika 77:615–633, 2012). In these models, the scores that result from a scoring rule that incorporates both the speed and accuracy of item responses are modeled. Our generalization is similar to that of the one-parameter logistic (or Rasch) model to the two-parameter logistic (or Birnbaum) model in item response theory. An expectation–maximization (EM) algorithm for estimating model parameters and standard errors was developed. Furthermore, methods to assess model fit are provided in the form of generalized residuals for item score functions and saddlepoint approximations to the density of the sum score. The presented methods were evaluated in a small simulation study, the results of which indicated good parameter recovery and reasonable type I error rates for the residuals. Finally, the methods were applied to two real data sets. It was found that the two-parameter SARM showed improved fit compared to the one-parameter SARM in both data sets.

Suggested Citation

  • Peter W. Rijn & Usama S. Ali, 2018. "A Generalized Speed–Accuracy Response Model for Dichotomous Items," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 109-131, March.
  • Handle: RePEc:spr:psycho:v:83:y:2018:i:1:d:10.1007_s11336-017-9590-9
    DOI: 10.1007/s11336-017-9590-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-017-9590-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-017-9590-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis Tuerlinckx & Paul Boeck, 2005. "Two interpretations of the discrimination parameter," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 629-650, December.
    2. Jochen Ranger & Jorg-Tobias Kuhn, 2012. "A flexible latent trait model for response times in tests," Psychometrika, Springer;The Psychometric Society, vol. 77(1), pages 31-47, January.
    3. Ke-Hai Yuan & Ying Cheng & Jeff Patton, 2014. "Information Matrices and Standard Errors for MLEs of Item Parameters in IRT," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 232-254, April.
    4. Shelby J. Haberman & Sandip Sinharay, 2013. "Generalized Residuals for General Models for Contingency Tables With Application to Item Response Theory," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1435-1444, December.
    5. Jeffrey Rouder & Dongchu Sun & Paul Speckman & Jun Lu & Duo Zhou, 2003. "A hierarchical bayesian statistical framework for response time distributions," Psychometrika, Springer;The Psychometric Society, vol. 68(4), pages 589-606, December.
    6. L. Thurstone, 1937. "Ability, motivation, and speed," Psychometrika, Springer;The Psychometric Society, vol. 2(4), pages 249-254, December.
    7. Wim J. van der Linden, 2008. "Using Response Times for Item Selection in Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 33(1), pages 5-20, March.
    8. Wim van der Linden, 2007. "A Hierarchical Framework for Modeling Speed and Accuracy on Test Items," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 287-308, September.
    9. Shelby Haberman & Sandip Sinharay & Kyong Chon, 2013. "Assessing Item Fit for Unidimensional Item Response Theory Models Using Residuals from Estimated Item Response Functions," Psychometrika, Springer;The Psychometric Society, vol. 78(3), pages 417-440, July.
    10. Martin Biehler & Heinz Holling & Philipp Doebler, 2015. "Saddlepoint Approximations of the Distribution of the Person Parameter in the Two Parameter Logistic Model," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 665-688, September.
    11. J. C. Naylor & A. F. M. Smith, 1982. "Applications of a Method for the Efficient Computation of Posterior Distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(3), pages 214-225, November.
    12. Gunter Maris & Han Maas, 2012. "Speed-Accuracy Response Models: Scoring Rules based on Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 615-633, October.
    13. Seonghoon Kim, 2012. "A Note on the Reliability Coefficients for Item Response Model-Based Ability Estimates," Psychometrika, Springer;The Psychometric Society, vol. 77(1), pages 153-162, January.
    14. Jochen Ranger & Jörg-Tobias Kuhn & José-Luis Gaviria, 2015. "A Race Model for Responses and Response Times in Tests," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 791-810, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inhan Kang & Paul Boeck & Roger Ratcliff, 2022. "Modeling Conditional Dependence of Response Accuracy and Response Time with the Diffusion Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 725-748, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inhan Kang & Paul Boeck & Roger Ratcliff, 2022. "Modeling Conditional Dependence of Response Accuracy and Response Time with the Diffusion Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 725-748, June.
    2. Jochen Ranger & Christoph König & Benjamin W. Domingue & Jörg-Tobias Kuhn & Andreas Frey, 2024. "A Multidimensional Partially Compensatory Response Time Model on Basis of the Log-Normal Distribution," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 431-464, June.
    3. M. Marsman & H. Sigurdardóttir & M. Bolsinova & G. Maris, 2019. "Characterizing the Manifest Probability Distributions of Three Latent Trait Models for Accuracy and Response Time," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 870-891, September.
    4. Jeffrey Rouder & Jordan Province & Richard Morey & Pablo Gomez & Andrew Heathcote, 2015. "The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 491-513, June.
    5. Steffi Pohl & Esther Ulitzsch & Matthias Davier, 2019. "Using Response Times to Model Not-Reached Items due to Time Limits," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 892-920, September.
    6. Shaw, Amy & Elizondo, Fabian & Wadlington, Patrick L., 2020. "Reasoning, fast and slow: How noncognitive factors may alter the ability-speed relationship," Intelligence, Elsevier, vol. 83(C).
    7. Jochen Ranger & Kay Brauer, 2022. "On the Generalized S − X 2 –Test of Item Fit: Some Variants, Residuals, and a Graphical Visualization," Journal of Educational and Behavioral Statistics, , vol. 47(2), pages 202-230, April.
    8. Yi-Hsuan Lee & Zhiliang Ying, 2015. "A Mixture Cure-Rate Model for Responses and Response Times in Time-Limit Tests," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 748-775, September.
    9. Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
    10. Frederik Coomans & Abe Hofman & Matthieu Brinkhuis & Han L J van der Maas & Gunter Maris, 2016. "Distinguishing Fast and Slow Processes in Accuracy - Response Time Data," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    11. Shiyu Wang & Yinghan Chen, 2020. "Using Response Times and Response Accuracy to Measure Fluency Within Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 600-629, September.
    12. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    13. Gunter Maris & Han Maas, 2012. "Speed-Accuracy Response Models: Scoring Rules based on Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 615-633, October.
    14. Sandip Sinharay & Peter W. van Rijn, 2020. "Assessing Fit of the Lognormal Model for Response Times," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 534-568, October.
    15. Inhan Kang & Minjeong Jeon & Ivailo Partchev, 2023. "A Latent Space Diffusion Item Response Theory Model to Explore Conditional Dependence between Responses and Response Times," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 830-864, September.
    16. Chun Wang & Gongjun Xu & Zhuoran Shang, 2018. "A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 223-254, March.
    17. Jochen Ranger & Jörg-Tobias Kuhn, 2015. "Modeling Information Accumulation in Psychological Tests Using Item Response Times," Journal of Educational and Behavioral Statistics, , vol. 40(3), pages 274-306, June.
    18. Kang, Inhan & De Boeck, Paul & Partchev, Ivailo, 2022. "A randomness perspective on intelligence processes," Intelligence, Elsevier, vol. 91(C).
    19. Hua-Hua Chang, 2015. "Psychometrics Behind Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 1-20, March.
    20. Maria Bolsinova & Jesper Tijmstra, 2016. "Posterior Predictive Checks for Conditional Independence Between Response Time and Accuracy," Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 123-145, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:83:y:2018:i:1:d:10.1007_s11336-017-9590-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.