Bayesian Model Assessment for Jointly Modeling Multidimensional Response Data with Application to Computerized Testing
Author
Abstract
Suggested Citation
DOI: 10.1007/s11336-022-09845-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chan, Joshua C.C. & Grant, Angelia L., 2016.
"Fast computation of the deviance information criterion for latent variable models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
- Joshua C.C. Chan & Angelia L. Grant, 2014. "Fast Computation of the Deviance Information Criterion for Latent Variable Models," CAMA Working Papers 2014-09, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
- Timothy Johnson, 2003. "On the use of heterogeneous thresholds ordinal regression models to account for individual differences in response style," Psychometrika, Springer;The Psychometric Society, vol. 68(4), pages 563-583, December.
- Wim Linden & Fanmin Guo, 2008. "Bayesian Procedures for Identifying Aberrant Response-Time Patterns in Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 365-384, September.
- Jeffrey Rouder & Jordan Province & Richard Morey & Pablo Gomez & Andrew Heathcote, 2015. "The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 491-513, June.
- Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
- R. Klein Entink & J.-P. Fox & W. Linden, 2009. "A Multivariate Multilevel Approach to the Modeling of Accuracy and Speed of Test Takers," Psychometrika, Springer;The Psychometric Society, vol. 74(1), pages 21-48, March.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
- T. Loeys & Y. Rosseel & K. Baten, 2011. "A Joint Modeling Approach for Reaction Time and Accuracy in Psycholinguistic Experiments," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 487-503, July.
- Edgar C. Merkle & Daniel Furr & Sophia Rabe-Hesketh, 2019. "Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 802-829, September.
- Daniel Bolt & James Wollack & Youngsuk Suh, 2012. "Application of a Multidimensional Nested Logit Model to Multiple-Choice Test Items," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 339-357, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
- Inhan Kang & Dylan Molenaar & Roger Ratcliff, 2023. "A Modeling Framework to Examine Psychological Processes Underlying Ordinal Responses and Response Times of Psychometric Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 940-974, September.
- Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
- Ye Yang & Osman Doğan & Süleyman Taşpınar, 2023. "Observed-data DIC for spatial panel data models," Empirical Economics, Springer, vol. 64(3), pages 1281-1314, March.
- Minjeong Jeon & Paul Boeck & Jevan Luo & Xiangrui Li & Zhong-Lin Lu, 2021. "Modeling Within-Item Dependencies in Parallel Data on Test Responses and Brain Activation," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 239-271, March.
- Chan, Joshua C.C., 2023.
"Comparing stochastic volatility specifications for large Bayesian VARs,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
- Joshua C. C. Chan, 2022. "Comparing Stochastic Volatility Specifications for Large Bayesian VARs," Papers 2208.13255, arXiv.org.
- Kang, Inhan & De Boeck, Paul & Partchev, Ivailo, 2022. "A randomness perspective on intelligence processes," Intelligence, Elsevier, vol. 91(C).
- Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016.
"Large Bayesian VARMAs,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
- Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2014. "Large Bayesian VARMAs," SIRE Discussion Papers 2015-06, Scottish Institute for Research in Economics (SIRE).
- Joshua C C Chan & Eric Eisenstat & Gary Koop, 2014. "Large Bayesian VARMAs," Working Papers 1409, University of Strathclyde Business School, Department of Economics.
- Joshua C.C. Chan & Eric Eisenstat & Gary Koop, 2014. "Large Bayesian VARMAs," Working Paper series 40_14, Rimini Centre for Economic Analysis.
- Joshua Chan & Eric Eisenstat & Gary Koop, 2015. "Large Bayesian VARMAs," Working Paper series 15-36, Rimini Centre for Economic Analysis.
- Joshua C. C. Chan, 2018.
"Specification tests for time-varying parameter models with stochastic volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
- Joshua C.C. Chan, 2015. "Specification tests for time-varying parameter models with stochastic volatility," CAMA Working Papers 2015-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Steffi Pohl & Esther Ulitzsch & Matthias Davier, 2019. "Using Response Times to Model Not-Reached Items due to Time Limits," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 892-920, September.
- Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
- Junior A. Ojeda Cunya & Gabriel Rodríguez, 2022. "Time-Varying Effects of External Shocks on Macroeconomic Fluctuations in Peru: An Empirical Application using TVP-VAR- SV Models," Documentos de Trabajo / Working Papers 2022-507, Departamento de Economía - Pontificia Universidad Católica del Perú.
- Shaw, Amy & Elizondo, Fabian & Wadlington, Patrick L., 2020. "Reasoning, fast and slow: How noncognitive factors may alter the ability-speed relationship," Intelligence, Elsevier, vol. 83(C).
- Shen‐Ming Lee & Truong‐Nhat Le & Phuoc‐Loc Tran & Chin‐Shang Li, 2022. "Investigating the association of a sensitive attribute with a random variable using the Christofides generalised randomised response design and Bayesian methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1471-1502, November.
- Rodríguez, Gabriel & Vassallo, Renato & Castillo B., Paul, 2023. "Effects of external shocks on macroeconomic fluctuations in Pacific Alliance countries," Economic Modelling, Elsevier, vol. 124(C).
- Aldo Gardini & Carlo Trivisano & Enrico Fabrizi, 2021. "Bayesian Analysis of ANOVA and Mixed Models on the Log-Transformed Response Variable," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 619-641, June.
- Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
- Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020.
"Business cycle dynamics after the Great Recession: An Extended Markov-Switching Dynamic Factor Model,"
Working Papers
halshs-02443364, HAL.
- Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An extended Markov-Switching Dynamic Factor Model," OECD Statistics Working Papers 2020/01, OECD Publishing.
- Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An Extended Markov-Switching Dynamic Factor Model," PSE Working Papers halshs-02443364, HAL.
More about this item
Keywords
computerized tests; DIC decomposition; IRT models; LPML decomposition; paper-and-pencil tests; response times;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:4:d:10.1007_s11336-022-09845-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.