IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v45y1991i2p159-171.html
   My bibliography  Save this article

Robustness of normal theory statistics in structural equation models

Author

Listed:
  • A. Mooijaart
  • P.M. Bentler

Abstract

A condition is given by which optimal normal theory methods, such as the maximum likelihood methods, are robust against violation of the normality assumption in a general linear structural equation model. Specifically, the estimators and the goodness of fit test are robust. The estimator is efficient within some defined class, and its standard errors can be obtained by a correction formula applied to the inverse of the information matrix. Some special models, like the factor analysis model and path models, are discussed in more detail. A method for evaluating the robustness condition is given.

Suggested Citation

  • A. Mooijaart & P.M. Bentler, 1991. "Robustness of normal theory statistics in structural equation models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 45(2), pages 159-171, June.
  • Handle: RePEc:bla:stanee:v:45:y:1991:i:2:p:159-171
    DOI: 10.1111/j.1467-9574.1991.tb01301.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9574.1991.tb01301.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9574.1991.tb01301.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke-Hai Yuan & Peter M. Bentler & Wei Zhang, 2005. "The Effect of Skewness and Kurtosis on Mean and Covariance Structure Analysis," Sociological Methods & Research, , vol. 34(2), pages 240-258, November.
    2. Prokhorov, Artem, 2009. "On relative efficiency of quasi-MLE and GMM estimators of covariance structure models," Economics Letters, Elsevier, vol. 102(1), pages 4-6, January.
    3. Albert Satorra, 1992. "Multi-sample analysis of moment-structures: Asymptotic validity of inferences based on second-order moments," Economics Working Papers 16, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Yutaka Kano & Masamori Ihara, 1994. "Identification of inconsistent variates in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 5-20, March.
    5. Hildebrandt, Lutz & Görz, Nicole, 1999. "Zum Stand der Kausalanalyse mit Strukturgleichungsmodellen: Methodische Trends und Software-Entwicklungen," SFB 373 Discussion Papers 1999,46, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    6. Terje Skjerpen, 2008. "Engel elasticities, pseudo-maximum likelihood estimation and bootstrapped standard errors. A case study," Discussion Papers 532, Statistics Norway, Research Department.
    7. Satorra, Albert & Neudecker, Heinz, 1994. "On the Asymptotic Optimality of Alternative Minimum-Distance Estimators in Linear Latent-Variable Models," Econometric Theory, Cambridge University Press, vol. 10(5), pages 867-883, December.
    8. Ogasawara, Haruhiko, 2005. "Asymptotic robustness of the asymptotic biases in structural equation modeling," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 771-783, June.
    9. Kano, Yutaka & Takai, Keiji, 2011. "Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1241-1255, October.
    10. Yuan, Ke-Hai & Bentler, Peter M., 2005. "Asymptotic robustness of the normal theory likelihood ratio statistic for two-level covariance structure models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 328-343, June.
    11. Mijke Rhemtulla & Victoria Savalei & Todd Little, 2016. "On the Asymptotic Relative Efficiency of Planned Missingness Designs," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 60-89, March.
    12. Ke-Hai Yuan & Yubin Tian & Hirokazu Yanagihara, 2015. "Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 379-405, June.
    13. Pison, Greet & Rousseeuw, Peter J. & Filzmoser, Peter & Croux, Christophe, 2003. "Robust factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 145-172, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:45:y:1991:i:2:p:159-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.