IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v26y2020i1d10.1007_s10985-019-09466-0.html
   My bibliography  Save this article

Multiplicative rates model for recurrent events in case-cohort studies

Author

Listed:
  • Poulami Maitra

    (University of North Carolina at Chapel Hill)

  • Leila D. A. F. Amorim

    (Federal University of Bahia)

  • Jianwen Cai

    (University of North Carolina at Chapel Hill)

Abstract

In large prospective cohort studies, accumulation of covariate information and follow-up data make up the majority of the cost involved in the study. This might lead to the study being infeasible when there are some expensive variables and/or the event is rare. Prentice (Biometrika 73(1):1–11, 1986) proposed the case-cohort study for time to event data to tackle this problem. There has been extensive research on the analysis of univariate and clustered failure time data, where the clusters are formed among different individuals under case-cohort sampling scheme. However, recurrent event data are quite common in biomedical and public health research. In this paper, we propose case-cohort sampling schemes for recurrent events. We consider a multiplicative rates model for the recurrent events and propose a weighted estimating equations approach for parameter estimation. We show that the estimators are consistent and asymptotically normally distributed. The proposed estimator performed well in finite samples in our simulation studies. For illustration purposes, we examined the association between prior occurrence of measles on acute lower respiratory tract infections (ALRI) among young children in Brazil.

Suggested Citation

  • Poulami Maitra & Leila D. A. F. Amorim & Jianwen Cai, 2020. "Multiplicative rates model for recurrent events in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 134-157, January.
  • Handle: RePEc:spr:lifeda:v:26:y:2020:i:1:d:10.1007_s10985-019-09466-0
    DOI: 10.1007/s10985-019-09466-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-019-09466-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-019-09466-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shou-En Lu & Joanna H. Shih, 2006. "Case-Cohort Designs and Analysis for Clustered Failure Time Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1138-1148, December.
    2. Douglas E. Schaubel, 2004. "Regression methods for gap time hazard functions of sequentially ordered multivariate failure time data," Biometrika, Biometrika Trust, vol. 91(2), pages 291-303, June.
    3. Michal Kulich & D.Y. Lin, 2004. "Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 832-844, January.
    4. S. Kang & J. Cai, 2009. "Marginal hazards model for case-cohort studies with multiple disease outcomes," Biometrika, Biometrika Trust, vol. 96(4), pages 887-901.
    5. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    6. Hui Zhang & Douglas E. Schaubel & John D. Kalbfleisch, 2011. "Proportional Hazards Regression for the Analysis of Clustered Survival Data from Case–Cohort Studies," Biometrics, The International Biometric Society, vol. 67(1), pages 18-28, March.
    7. Kani Chen, 2001. "Generalized case–cohort sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 791-809.
    8. Cook, Richard J. & Lawless, Jerald F. & Lakhal-Chaieb, Lajmi & Lee, Ker-Ai, 2009. "Robust Estimation of Mean Functions and Treatment Effects for Recurrent Events Under Event-Dependent Censoring and Termination: Application to Skeletal Complications in Cancer Metastatic to Bone," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 60-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brenière, Léa & Doyen, Laurent & Bérenguer, Christophe, 2020. "Virtual age models with time-dependent covariates: A framework for simulation, parametric inference and quality of estimation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    2. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    3. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    4. Ying Yan & Haibo Zhou & Jianwen Cai, 2017. "Improving efficiency of parameter estimation in case-cohort studies with multivariate failure time data," Biometrics, The International Biometric Society, vol. 73(3), pages 1042-1052, September.
    5. Jieli Ding & Liuquan Sun, 2017. "Additive mixed effect model for recurrent gap time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 223-253, April.
    6. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    7. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    8. Xin Chen & Jieli Ding & Liuquan Sun, 2018. "A semiparametric additive rate model for a modulated renewal process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 675-698, October.
    9. Soyoung Kim & Donglin Zeng & Jianwen Cai, 2018. "Analysis of multiple survival events in generalized case‐cohort designs," Biometrics, The International Biometric Society, vol. 74(4), pages 1250-1260, December.
    10. Sankaran, P.G. & Anisha, P., 2012. "Additive hazards models for gap time data with multiple causes," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1454-1462.
    11. Yanqing Sun & Xiyuan Qian & Qiong Shou & Peter B. Gilbert, 2017. "Analysis of two-phase sampling data with semiparametric additive hazards models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 377-399, July.
    12. Xiaoyan Sun & Limin Peng & Yijian Huang & HuiChuan J. Lai, 2016. "Generalizing Quantile Regression for Counting Processes With Applications to Recurrent Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 145-156, March.
    13. Hong Zhu, 2014. "Non-parametric Analysis of Gap Times for Multiple Event Data: An Overview," International Statistical Review, International Statistical Institute, vol. 82(1), pages 106-122, April.
    14. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.
    15. Chien-Lin Su & Russell J. Steele & Ian Shrier, 2021. "The semiparametric accelerated trend-renewal process for recurrent event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 357-387, July.
    16. Zheng, Ming & Zhao, Ziqiang & Yu, Wen, 2013. "Quantile regression analysis of case-cohort data," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 20-34.
    17. Jean‐Yves Dauxois & Sophie Sencey, 2009. "Non‐parametric Tests for Recurrent Events under Competing Risks," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 649-670, December.
    18. Zhao, Xiaobing & Zhou, Xian, 2012. "Modeling gap times between recurrent events by marginal rate function," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 370-383.
    19. Deng, Lifeng & Ding, Jieli & Liu, Yanyan & Wei, Chengdong, 2018. "Regression analysis for the proportional hazards model with parameter constraints under case-cohort design," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 194-206.
    20. Sangwook Kang & Jianwen Cai, 2009. "Marginal Hazards Regression for Retrospective Studies within Cohort with Possibly Correlated Failure Time Data," Biometrics, The International Biometric Society, vol. 65(2), pages 405-414, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:26:y:2020:i:1:d:10.1007_s10985-019-09466-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.