IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v69y2020i4p791-814.html
   My bibliography  Save this article

A hybrid approach for the stratified mark‐specific proportional hazards model with missing covariates and missing marks, with application to vaccine efficacy trials

Author

Listed:
  • Yanqing Sun
  • Li Qi
  • Fei Heng
  • Peter B. Gilbert

Abstract

Deployment of the recently licensed tetravalent dengue vaccine based on a chimeric yellow fever virus, CYD‐TDV, requires understanding of how the risk of dengue disease in vaccine recipients depends jointly on a host biomarker measured after vaccination (neutralization titre—neutralizing antibodies) and on a ‘mark’ feature of the dengue disease failure event (the amino acid sequence distance of the dengue virus to the dengue sequence represented in the vaccine). The CYD14 phase 3 trial of CYD‐TDV measured neutralizing antibodies via case–cohort sampling and the mark in dengue disease failure events, with about a third missing marks. We addressed the question of interest by developing inferential procedures for the stratified mark‐specific proportional hazards model with missing covariates and missing marks. Two hybrid approaches are investigated that leverage both augmented inverse probability weighting and nearest neighbourhood hot deck multiple imputation. The two approaches differ in how the imputed marks are pooled in estimation. Our investigation shows that nearest neighbourhood hot deck imputation can lead to biased estimation without properly selected neighbourhoods. Simulations show that the hybrid methods developed perform well with unbiased nearest neighbourhood hot deck imputations from proper neighbourhood selection. The new methods applied to CYD14 show that neutralizing antibody level is strongly inversely associated with the risk of dengue disease in vaccine recipients, more strongly against dengue viruses with shorter distances.

Suggested Citation

  • Yanqing Sun & Li Qi & Fei Heng & Peter B. Gilbert, 2020. "A hybrid approach for the stratified mark‐specific proportional hazards model with missing covariates and missing marks, with application to vaccine efficacy trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 791-814, August.
  • Handle: RePEc:bla:jorssc:v:69:y:2020:i:4:p:791-814
    DOI: 10.1111/rssc.12417
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12417
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yanqing Sun & Peter B. Gilbert, 2012. "Estimation of Stratified Mark‐Specific Proportional Hazards Models with Missing Marks," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(1), pages 34-52, March.
    2. Michal Juraska & Peter B. Gilbert, 2016. "Mark-specific hazard ratio model with missing multivariate marks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 606-625, October.
    3. Sun, Yanqing & Li, Mei & Gilbert, Peter B., 2016. "Goodness-of-fit test of the stratified mark-specific proportional hazards model with continuous mark," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 348-358.
    4. Michal Kulich & D.Y. Lin, 2004. "Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 832-844, January.
    5. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 300-301, July.
    6. Guangren Yang & Yanqing Sun & Li Qi & Peter B. Gilbert, 2017. "Estimation of Stratified Mark-Specific Proportional Hazards Models Under Two-Phase Sampling with Application to HIV Vaccine Efficacy Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 259-283, June.
    7. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    8. M. Juraska & P. B. Gilbert, 2013. "Mark-Specific Hazard Ratio Model with Multivariate Continuous Marks: An Application to Vaccine Efficacy," Biometrics, The International Biometric Society, vol. 69(2), pages 328-337, June.
    9. Peter B. Gilbert & Yanqing Sun, 2015. "Inferences on relative failure rates in stratified mark-specific proportional hazards models with missing marks, with application to human immunodeficiency virus vaccine efficacy trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(1), pages 49-73, January.
    10. Peter Gilbert & Ian McKeague & Yanqing Sun, 2004. "Tests for Comparing Mark-Specific Hazards and Cumulative Incidence Functions," UW Biostatistics Working Paper Series 1032, Berkeley Electronic Press.
    11. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    12. Guozhi Gao & Anastasios A. Tsiatis, 2005. "Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure," Biometrika, Biometrika Trust, vol. 92(4), pages 875-891, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangren Yang & Yanqing Sun & Li Qi & Peter B. Gilbert, 2017. "Estimation of Stratified Mark-Specific Proportional Hazards Models Under Two-Phase Sampling with Application to HIV Vaccine Efficacy Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 259-283, June.
    2. Dongxiao Han & Liuquan Sun & Yanqing Sun & Li Qi, 2017. "Mark-specific additive hazards regression with continuous marks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 467-494, July.
    3. Yanqing Sun & Xiyuan Qian & Qiong Shou & Peter B. Gilbert, 2017. "Analysis of two-phase sampling data with semiparametric additive hazards models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 377-399, July.
    4. Sullivan, Danielle & Andridge, Rebecca, 2015. "A hot deck imputation procedure for multiply imputing nonignorable missing data: The proxy pattern-mixture hot deck," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 173-185.
    5. Ralf Münnich & Siegfried Gabler & Christian Bruch & Jan Pablo Burgard & Tobias Enderle & Jan-Philipp Kolb & Thomas Zimmermann, 2015. "Tabellenauswertungen im Zensus unter Berücksichtigung fehlender Werte," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(3), pages 269-304, December.
    6. Jana Emmenegger & Ralf Münnich & Jannik Schaller, 2022. "Evaluating Data Fusion Methods to Improve Income Modelling," Research Papers in Economics 2022-03, University of Trier, Department of Economics.
    7. Fei Heng & Yanqing Sun & Seunggeun Hyun & Peter B. Gilbert, 2020. "Analysis of the time-varying Cox model for the cause-specific hazard functions with missing causes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 731-760, October.
    8. Kristian Kleinke, 2017. "Multiple Imputation Under Violated Distributional Assumptions: A Systematic Evaluation of the Assumed Robustness of Predictive Mean Matching," Journal of Educational and Behavioral Statistics, , vol. 42(4), pages 371-404, August.
    9. Chenyang Gu & Roee Gutman, 2017. "Combining item response theory with multiple imputation to equate health assessment questionnaires," Biometrics, The International Biometric Society, vol. 73(3), pages 990-998, September.
    10. Chia-Ning Wang & Roderick Little & Bin Nan & Siobán D. Harlow, 2011. "A Hot-Deck Multiple Imputation Procedure for Gaps in Longitudinal Recurrent Event Histories," Biometrics, The International Biometric Society, vol. 67(4), pages 1573-1582, December.
    11. Adel Bosch & Steven F. Koch, 2021. "Individual and Household Debt: Does Imputation Choice Matter?," Working Papers 202141, University of Pretoria, Department of Economics.
    12. Michal Juraska & Peter B. Gilbert, 2016. "Mark-specific hazard ratio model with missing multivariate marks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 606-625, October.
    13. Sun, Yanqing & Li, Mei & Gilbert, Peter B., 2016. "Goodness-of-fit test of the stratified mark-specific proportional hazards model with continuous mark," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 348-358.
    14. Anika Rasner & Joachim R. Frick & Markus M. Grabka, 2013. "Statistical Matching of Administrative and Survey Data," Sociological Methods & Research, , vol. 42(2), pages 192-224, May.
    15. Shu Yang & Jae Kwang Kim, 2020. "Asymptotic theory and inference of predictive mean matching imputation using a superpopulation model framework," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 839-861, September.
    16. Raymundo M. Campos-Vázquez, 2013. "Efectos de los ingresos no reportados en el nivel y tendencia de la pobreza laboral en México," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 23-54, November.
    17. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    18. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Discussion Paper 1992-7, Tilburg University, Center for Economic Research.
    19. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    20. Martin, Eisele & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," MPRA Paper 57666, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:69:y:2020:i:4:p:791-814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.