IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v152y2016icp259-275.html
   My bibliography  Save this article

Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models

Author

Listed:
  • Xia, Ye-Mao
  • Tang, Nian-Sheng
  • Gou, Jian-Wei

Abstract

This article presents a generalized linear latent variable model for analyzing multivariate longitudinal data within the hidden Markov model framework. The relationships among multiple items are captured by several common latent factors. The linear coregionalization method is adopted to model the temporal processes of latent variables. The merit of this modeling strategy lies in the fact that the processes among latent variables are nonseparate and codependent from each other. To account for possible heterogeneity and interrelationship among the longitudinal data, a hidden Markov model is introduced to model the transition probabilities across different latent states over time. The Monte Carlo expectation conditional maximization (MCECM) algorithm is developed to estimate unknown parameters in the proposed model. The Wald- and score-type statistics are proposed to test the related dependence of processes. A simulation study is conducted to investigate the performance of the proposed methodology. An example from a longitudinal study of cocaine use is taken to illustrate the proposed methodology.

Suggested Citation

  • Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
  • Handle: RePEc:eee:jmvana:v:152:y:2016:i:c:p:259-275
    DOI: 10.1016/j.jmva.2016.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16300847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florian Heiss, 2008. "Sequential numerical integration in nonlinear state space models for microeconometric panel data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 373-389.
    2. Peter Molenaar, 1985. "A dynamic factor model for the analysis of multivariate time series," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 181-202, June.
    3. Sanjoy Sinha, 2012. "Robust analysis of longitudinal data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(7), pages 913-938, October.
    4. J. Zhu & J. C. Eickhoff & P. Yan, 2005. "Generalized Linear Latent Variable Models for Repeated Measures of Spatially Correlated Multivariate Data," Biometrics, The International Biometric Society, vol. 61(3), pages 674-683, September.
    5. R. Cattell & A. Cattell & R. Rhymer, 1947. "P-technique demonstrated in determining psychophysiological source traits in a normal individual," Psychometrika, Springer;The Psychometric Society, vol. 12(4), pages 267-288, December.
    6. Ibrahim, Joseph G. & Zhu, Hongtu & Tang, Niansheng, 2008. "Model Selection Criteria for Missing-Data Problems Using the EM Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1648-1658.
    7. Dunson, David B., 2003. "Dynamic Latent Trait Models for Multidimensional Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 555-563, January.
    8. Tyler H. McCormick & Adrian E. Raftery & David Madigan & Randall S. Burd, 2012. "Dynamic Logistic Regression and Dynamic Model Averaging for Binary Classification," Biometrics, The International Biometric Society, vol. 68(1), pages 23-30, March.
    9. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    10. Jian-Qing Shi & Sik-Yum Lee, 1997. "A bayesian estimation of factor score in confirmatory factor model with polytomous, censored or truncated data," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 29-50, March.
    11. Francesco Bartolucci & Silvia Bacci & Fulvia Pennoni, 2014. "Longitudinal analysis of self-reported health status by mixture latent auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(2), pages 267-288, February.
    12. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
    13. Bartolucci, Francesco & Farcomeni, Alessio, 2009. "A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 816-831.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.
    2. Esther Acquah & Lorenzo Carbonari & Alessio Farcomeni & Giovanni Trovato, 2023. "Institutions and economic development: new measurements and evidence," Empirical Economics, Springer, vol. 65(4), pages 1693-1728, October.
    3. Lorenzo Carbonari & Alessio Farcomeni & Cosimo Petracchi & Giovanni Trovato, 2024. "Macroprudential Policies and Credit Volatility," Working Paper series 24-16, Rimini Centre for Economic Analysis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Bianconcini, 2014. "Comments on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 466-468, September.
    2. Silvia Cagnone & Francesco Bartolucci, 2017. "Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 599-622, April.
    3. Cagnone, Silvia & Bartolucci, Francesco, 2013. "Adaptive quadrature for likelihood inference on dynamic latent variable models for time-series and panel data," MPRA Paper 51037, University Library of Munich, Germany.
    4. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    5. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    6. Franco Peracchi & Claudio Rossetti, 2022. "A nonlinear dynamic factor model of health and medical treatment," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1046-1066, June.
    7. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    8. Bartolucci, Francesco & Belotti, Federico & Peracchi, Franco, 2015. "Testing for time-invariant unobserved heterogeneity in generalized linear models for panel data," Journal of Econometrics, Elsevier, vol. 184(1), pages 111-123.
    9. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    10. Silvia Cagnone & Cinzia Viroli, 2018. "Multivariate latent variable transition models of longitudinal mixed data: an analysis on alcohol use disorder," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1399-1418, November.
    11. Joan Gil & Paolo Li Donni & Eugenio Zucchelli, 2019. "Uncontrolled diabetes and health care utilisation: A bivariate latent Markov model approach," Health Economics, John Wiley & Sons, Ltd., vol. 28(11), pages 1262-1276, November.
    12. Francesco Bartolucci & Valentina Nigro & Claudia Pigini, 2018. "Testing for state dependence in binary panel data with individual covariates by a modified quadratic exponential model," Econometric Reviews, Taylor & Francis Journals, vol. 37(1), pages 61-88, January.
    13. Jenni Niku & David I. Warton & Francis K. C. Hui & Sara Taskinen, 2017. "Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 498-522, December.
    14. J. Zhu & J. C. Eickhoff & P. Yan, 2005. "Generalized Linear Latent Variable Models for Repeated Measures of Spatially Correlated Multivariate Data," Biometrics, The International Biometric Society, vol. 61(3), pages 674-683, September.
    15. Fei Gu & Kristopher J. Preacher & Emilio Ferrer, 2014. "A State Space Modeling Approach to Mediation Analysis," Journal of Educational and Behavioral Statistics, , vol. 39(2), pages 117-143, April.
    16. M. Pilar Muñoz & Cristina Corchero & F.-Javier Heredia, 2013. "Improving Electricity Market Price Forecasting with Factor Models for the Optimal Generation Bid," International Statistical Review, International Statistical Institute, vol. 81(2), pages 289-306, August.
    17. Bartolucci, Francesco & Lupparelli, Monia, 2012. "Nested hidden Markov chains for modeling dynamic unobserved heterogeneity in multilevel longitudinal data," MPRA Paper 40588, University Library of Munich, Germany.
    18. Francesco Bartolucci & Silvia Bacci & Fulvia Pennoni, 2014. "Longitudinal analysis of self-reported health status by mixture latent auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(2), pages 267-288, February.
    19. Roberto Mari & Antonello Maruotti, 2022. "A two-step estimator for generalized linear models for longitudinal data with time-varying measurement error," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 273-300, June.
    20. Nicholas J. Rockwood, 2021. "Efficient Likelihood Estimation of Generalized Structural Equation Models with a Mix of Normal and Nonnormal Responses," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 642-667, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:152:y:2016:i:c:p:259-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.