IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v73y2008i1p39-64.html
   My bibliography  Save this article

Bayesian Hierarchical Classes Analysis

Author

Listed:
  • Iwin Leenen
  • Iven Mechelen
  • Andrew Gelman
  • Stijn Knop

Abstract

No abstract is available for this item.

Suggested Citation

  • Iwin Leenen & Iven Mechelen & Andrew Gelman & Stijn Knop, 2008. "Bayesian Hierarchical Classes Analysis," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 39-64, March.
  • Handle: RePEc:spr:psycho:v:73:y:2008:i:1:p:39-64
    DOI: 10.1007/s11336-007-9038-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-007-9038-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-007-9038-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eva Ceulemans & Iven Mechelen & Iwin Leenen, 2003. "Tucker3 hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 413-433, September.
    2. Eva Ceulemans & Iven Mechelen & Peter Kuppens, 2004. "Adapting the Formal to the Substantive: Constrained Tucker3-HICLASS," Journal of Classification, Springer;The Classification Society, vol. 21(1), pages 19-50, March.
    3. Iwin Leenen & Iven Mechelen & Paul Boeck & Seymour Rosenberg, 1999. "Indclas: A three-way hierarchical classes model," Psychometrika, Springer;The Psychometric Society, vol. 64(1), pages 9-24, March.
    4. Iwin Leenen & Iven Mechelen & Paul Boeck, 2001. "Models for ordinal hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 66(3), pages 389-403, September.
    5. Eric Maris & Paul Boeck & Iven Mechelen, 1996. "Probability matrix decomposition models," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 7-29, March.
    6. Paul Boeck & Seymour Rosenberg, 1988. "Hierarchical classes: Model and data analysis," Psychometrika, Springer;The Psychometric Society, vol. 53(3), pages 361-381, September.
    7. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    8. Michel Meulders & Paul Boeck & Iven Mechelen, 2003. "A taxonomy of latent structure assumptions for probability matrix decomposition models," Psychometrika, Springer;The Psychometric Society, vol. 68(1), pages 61-77, March.
    9. Iwin Leenen & Iven Van Mechelen, 2001. "An Evaluation of Two Algorithms for Hierarchical Classes Analysis," Journal of Classification, Springer;The Classification Society, vol. 18(1), pages 57-80, January.
    10. Iven Mechelen & Paul Boeck & Seymour Rosenberg, 1995. "The conjunctive model of hierarchical classes," Psychometrika, Springer;The Psychometric Society, vol. 60(4), pages 505-521, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    2. Tom Wilderjans & E. Ceulemans & I. Mechelen, 2012. "The SIMCLAS Model: Simultaneous Analysis of Coupled Binary Data Matrices with Noise Heterogeneity Between and Within Data Blocks," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 724-740, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Wilderjans & E. Ceulemans & I. Mechelen, 2012. "The SIMCLAS Model: Simultaneous Analysis of Coupled Binary Data Matrices with Noise Heterogeneity Between and Within Data Blocks," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 724-740, October.
    2. Van Mechelen, Iven & Schepers, Jan, 2007. "A unifying model involving a categorical and/or dimensional reduction for multimode data," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 537-549, September.
    3. Iwin Leenen & Iven Mechelen & Paul Boeck, 2001. "Models for ordinal hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 66(3), pages 389-403, September.
    4. Eva Ceulemans & Iven Mechelen, 2005. "Hierarchical classes models for three-way three-mode binary data: interrelations and model selection," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 461-480, September.
    5. Eva Ceulemans & Iven Mechelen & Iwin Leenen, 2007. "The Local Minima Problem in Hierarchical Classes Analysis: An Evaluation of a Simulated Annealing Algorithm and Various Multistart Procedures," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 377-391, September.
    6. Eva Ceulemans & Iven Mechelen & Iwin Leenen, 2003. "Tucker3 hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 413-433, September.
    7. Iven Mechelen & Luigi Lombardi & Eva Ceulemans, 2007. "Hierarchical Classes Modeling of Rating Data," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 475-488, December.
    8. Eva Ceulemans & Iven Mechelen, 2004. "Tucker2 hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 375-399, September.
    9. Meulders, Michel & Boeck, Paul De & Mechelen, Iven Van, 2001. "Probability matrix decomposition models and main-effects generalized linear models for the analysis of replicated binary associations," Computational Statistics & Data Analysis, Elsevier, vol. 38(2), pages 217-233, December.
    10. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.
    11. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    12. Meulders, Michel & De Boeck, Paul & Realo, Anu, 2009. "The Circumplex Theory of National Pride," Working Papers 2009/41, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    13. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    14. Nadja Bodner & Laura Bringmann & Francis Tuerlinckx & Peter Jonge & Eva Ceulemans, 2022. "ConNEcT: A Novel Network Approach for Investigating the Co-occurrence of Binary Psychopathological Symptoms Over Time," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 107-132, March.
    15. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    16. Kakamu, Kazuhiko & Yunoue, Hideo & Kuramoto, Takashi, 2014. "Spatial patterns of flypaper effects for local expenditure by policy objective in Japan: A Bayesian approach," Economic Modelling, Elsevier, vol. 37(C), pages 500-506.
    17. Parent, Olivier & LeSage, James P., 2011. "A space-time filter for panel data models containing random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 475-490, January.
    18. Gary Bolton & Duncan Fong & Paul Mosquin, 2003. "Bayes Factors with an Application to Experimental Economics," Experimental Economics, Springer;Economic Science Association, vol. 6(3), pages 311-325, November.
    19. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Moeltner, Klaus, 2019. "Bayesian nonlinear meta regression for benefit transfer," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 44-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:73:y:2008:i:1:p:39-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.