IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v18y2001i1p57-80.html
   My bibliography  Save this article

An Evaluation of Two Algorithms for Hierarchical Classes Analysis

Author

Listed:
  • Iwin Leenen
  • Iven Van Mechelen

Abstract

In this procedure, a least-squares loss function in terms of discrepancies between D and M is minimized. The present paper describes the original hierarchical classes algorithm proposed by De Boeck and Rosenberg (1988), which is based on an alternating greedy heuristic, and proposes a new algorithm, based on an alternating branch-and-bound procedure. An extensive simulation study is reported in which both algorithms are evaluated and compared according to goodness-of-fit to the data and goodness-of-recovery of the underlying true structure. Furthermore, three heuristics for selecting models of different ranks for a given D are presented and compared. The simulation results show that the new algorithm yields models with slightly higher goodness-of-fit and goodness-of-recovery values. Copyright Springer-Verlag New York Inc. 2001

Suggested Citation

  • Iwin Leenen & Iven Van Mechelen, 2001. "An Evaluation of Two Algorithms for Hierarchical Classes Analysis," Journal of Classification, Springer;The Classification Society, vol. 18(1), pages 57-80, January.
  • Handle: RePEc:spr:jclass:v:18:y:2001:i:1:p:57-80
    DOI: 10.1007/s00357-001-0005-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-001-0005-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-001-0005-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eva Vande Gaer & Eva Ceulemans & Iven Mechelen & Peter Kuppens, 2012. "The CLASSI-N Method for the Study of Sequential Processes," Psychometrika, Springer;The Psychometric Society, vol. 77(1), pages 85-105, January.
    2. Tom Wilderjans & E. Ceulemans & I. Mechelen, 2012. "The SIMCLAS Model: Simultaneous Analysis of Coupled Binary Data Matrices with Noise Heterogeneity Between and Within Data Blocks," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 724-740, October.
    3. Iven Mechelen & Luigi Lombardi & Eva Ceulemans, 2007. "Hierarchical Classes Modeling of Rating Data," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 475-488, December.
    4. Eva Ceulemans & Iven Mechelen & Iwin Leenen, 2007. "The Local Minima Problem in Hierarchical Classes Analysis: An Evaluation of a Simulated Annealing Algorithm and Various Multistart Procedures," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 377-391, September.
    5. Iwin Leenen & Iven Mechelen & Andrew Gelman & Stijn Knop, 2008. "Bayesian Hierarchical Classes Analysis," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 39-64, March.
    6. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.
    7. Alfonso Gutierrez-Lopez & Carlos Chávez & Carlos Díaz-Delgado, 2022. "Autocorrelation Ratio as a Measure of Inertia for the Classification of Extreme Events," Mathematics, MDPI, vol. 10(12), pages 1-15, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:18:y:2001:i:1:p:57-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.