IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v87y2022i1d10.1007_s11336-021-09765-2.html
   My bibliography  Save this article

ConNEcT: A Novel Network Approach for Investigating the Co-occurrence of Binary Psychopathological Symptoms Over Time

Author

Listed:
  • Nadja Bodner

    (KU Leuven (University of Leuven))

  • Laura Bringmann

    (University of Groningen
    University of Groningen)

  • Francis Tuerlinckx

    (KU Leuven (University of Leuven))

  • Peter Jonge

    (University of Groningen
    University of Groningen)

  • Eva Ceulemans

    (Leuven (University of Leuven))

Abstract

Network analysis is an increasingly popular approach to study mental disorders in all their complexity. Multiple methods have been developed to extract networks from cross-sectional data, with these data being either continuous or binary. However, when it comes to time series data, most efforts have focused on continuous data. We therefore propose ConNEcT, a network approach for binary symptom data across time. ConNEcT allows to visualize and study the prevalence of different symptoms as well as their co-occurrence, measured by means of a contingency measure in one single network picture. ConNEcT can be complemented with a significance test that accounts for the serial dependence in the data. To illustrate the usefulness of ConNEcT, we re-analyze data from a study in which patients diagnosed with major depressive disorder weekly reported the absence or presence of eight depression symptoms. We first extract ConNEcTs for all patients that provided data during at least 104 weeks, revealing strong inter-individual differences in which symptom pairs co-occur significantly. Second, to gain insight into these differences, we apply Hierarchical Classes Analysis on the co-occurrence patterns of all patients, showing that they can be grouped into meaningful clusters. Core depression symptoms (i.e., depressed mood and/or diminished interest), cognitive problems and loss of energy seem to co-occur universally, but preoccupation with death, psychomotor problems or eating problems only co-occur with other symptoms for specific patient subgroups.

Suggested Citation

  • Nadja Bodner & Laura Bringmann & Francis Tuerlinckx & Peter Jonge & Eva Ceulemans, 2022. "ConNEcT: A Novel Network Approach for Investigating the Co-occurrence of Binary Psychopathological Symptoms Over Time," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 107-132, March.
  • Handle: RePEc:spr:psycho:v:87:y:2022:i:1:d:10.1007_s11336-021-09765-2
    DOI: 10.1007/s11336-021-09765-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09765-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09765-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    2. Angélique O J Cramer & Claudia D van Borkulo & Erik J Giltay & Han L J van der Maas & Kenneth S Kendler & Marten Scheffer & Denny Borsboom, 2016. "Major Depression as a Complex Dynamic System," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-20, December.
    3. Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
    4. Stijn de Vos & Klaas J Wardenaar & Elisabeth H Bos & Ernst C Wit & Mara E J Bouwmans & Peter de Jonge, 2017. "An investigation of emotion dynamics in major depressive disorder patients and healthy persons using sparse longitudinal networks," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    5. Eva Ceulemans & Iven Mechelen & Iwin Leenen, 2007. "The Local Minima Problem in Hierarchical Classes Analysis: An Evaluation of a Simulated Annealing Algorithm and Various Multistart Procedures," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 377-391, September.
    6. Eva Ceulemans & Iven Mechelen, 2005. "Hierarchical classes models for three-way three-mode binary data: interrelations and model selection," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 461-480, September.
    7. Paul Boeck & Seymour Rosenberg, 1988. "Hierarchical classes: Model and data analysis," Psychometrika, Springer;The Psychometric Society, vol. 53(3), pages 361-381, September.
    8. Hudson F Golino & Sacha Epskamp, 2017. "Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-26, June.
    9. Sacha Epskamp & Joost Kruis & Maarten Marsman, 2017. "Estimating psychopathological networks: Be careful what you wish for," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-13, June.
    10. Iven Mechelen & Paul Boeck & Seymour Rosenberg, 1995. "The conjunctive model of hierarchical classes," Psychometrika, Springer;The Psychometric Society, vol. 60(4), pages 505-521, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denny Borsboom, 2022. "Possible Futures for Network Psychometrics," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 253-265, March.
    2. Maarten Marsman & Mijke Rhemtulla, 2022. "Guest Editors’ Introduction to The Special Issue “Network Psychometrics in Action”: Methodological Innovations Inspired by Empirical Problems," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Wilderjans & E. Ceulemans & I. Mechelen, 2012. "The SIMCLAS Model: Simultaneous Analysis of Coupled Binary Data Matrices with Noise Heterogeneity Between and Within Data Blocks," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 724-740, October.
    2. Van Mechelen, Iven & Schepers, Jan, 2007. "A unifying model involving a categorical and/or dimensional reduction for multimode data," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 537-549, September.
    3. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.
    4. Inken Höller & Dajana Schreiber & Fionneke Bos & Thomas Forkmann & Tobias Teismann & Jürgen Margraf, 2022. "The Mereology of Depression—Networks of Depressive Symptoms during the Course of Psychotherapy," IJERPH, MDPI, vol. 19(12), pages 1-13, June.
    5. M. Marsman & K. Huth & L. J. Waldorp & I. Ntzoufras, 2022. "Objective Bayesian Edge Screening and Structure Selection for Ising Networks," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 47-82, March.
    6. Maarten Marsman & Mijke Rhemtulla, 2022. "Guest Editors’ Introduction to The Special Issue “Network Psychometrics in Action”: Methodological Innovations Inspired by Empirical Problems," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 1-11, March.
    7. Miguel Ángel Castellanos & Berta Ausín & Sara Bestea & Clara González-Sanguino & Manuel Muñoz, 2020. "A Network Analysis of Major Depressive Disorder Symptoms and Age- and Gender-Related Differences in People over 65 in a Madrid Community Sample (Spain)," IJERPH, MDPI, vol. 17(23), pages 1-13, December.
    8. Eva Ceulemans & Iven Mechelen & Iwin Leenen, 2003. "Tucker3 hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 413-433, September.
    9. Denny Borsboom, 2022. "Possible Futures for Network Psychometrics," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 253-265, March.
    10. Zhou, Jianhua & Zhang, Lulu & Gong, Xue, 2023. "Longitudinal network relations between symptoms of problematic internet game use and internalizing and externalizing problems among Chinese early adolescents," Social Science & Medicine, Elsevier, vol. 333(C).
    11. Iwin Leenen & Iven Mechelen & Andrew Gelman & Stijn Knop, 2008. "Bayesian Hierarchical Classes Analysis," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 39-64, March.
    12. María Guillot-Valdés & Alejandro Guillén-Riquelme & Juan Carlos Sierra & Gualberto Buela-Casal, 2022. "Network and Exploratory Factorial Analysis of the Depression Clinical Evaluation Test," IJERPH, MDPI, vol. 19(17), pages 1-26, August.
    13. Eva Ceulemans & Iven Mechelen, 2005. "Hierarchical classes models for three-way three-mode binary data: interrelations and model selection," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 461-480, September.
    14. Sacha Epskamp, 2020. "Psychometric network models from time-series and panel data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 206-231, March.
    15. Pedro Henrique Ribeiro Santiago & Gustavo Hermes Soares & Lisa Gaye Smithers & Rachel Roberts & Lisa Jamieson, 2022. "Psychological Network of Stress, Coping and Social Support in an Aboriginal Population," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    16. Dirk Depril & Iven Mechelen & Tom Wilderjans, 2012. "Lowdimensional Additive Overlapping Clustering," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 297-320, October.
    17. Srebrenka Letina & Tessa F. Blanken & Marie K. Deserno & Denny Borsboom, 2019. "Expanding Network Analysis Tools in Psychological Networks: Minimal Spanning Trees, Participation Coefficients, and Motif Analysis Applied to a Network of 26 Psychological Attributes," Complexity, Hindawi, vol. 2019, pages 1-27, February.
    18. Paul B. Perrin & Daniela Ramos-Usuga & Samuel J. West & Kritzia Merced & Daniel W. Klyce & Anthony H. Lequerica & Laiene Olabarrieta-Landa & Elisabet Alzueta & Fiona C. Baker & Stella Iacovides & Mar , 2022. "Network Analysis of Neurobehavioral Symptom Patterns in an International Sample of Spanish-Speakers with a History of COVID-19 and Controls," IJERPH, MDPI, vol. 20(1), pages 1-11, December.
    19. Iwin Leenen & Iven Mechelen & Paul Boeck, 2001. "Models for ordinal hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 66(3), pages 389-403, September.
    20. Juyeon Lee & Alvin Junus, 2024. "Differences and Similarities in Youth Social-emotional Competence Measurement Between North American and East Asian Countries: Exploratory Graph Analysis using the OECD Survey on Social and Emotional ," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 17(1), pages 57-79, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:1:d:10.1007_s11336-021-09765-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.