IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v68y2003i3p413-433.html
   My bibliography  Save this article

Tucker3 hierarchical classes analysis

Author

Listed:
  • Eva Ceulemans
  • Iven Mechelen
  • Iwin Leenen

Abstract

No abstract is available for this item.

Suggested Citation

  • Eva Ceulemans & Iven Mechelen & Iwin Leenen, 2003. "Tucker3 hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 413-433, September.
  • Handle: RePEc:spr:psycho:v:68:y:2003:i:3:p:413-433
    DOI: 10.1007/BF02294735
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294735
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02294735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iwin Leenen & Iven Mechelen & Paul Boeck, 2001. "Models for ordinal hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 66(3), pages 389-403, September.
    2. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    3. Paul Boeck & Seymour Rosenberg, 1988. "Hierarchical classes: Model and data analysis," Psychometrika, Springer;The Psychometric Society, vol. 53(3), pages 361-381, September.
    4. Iven Mechelen & Paul Boeck & Seymour Rosenberg, 1995. "The conjunctive model of hierarchical classes," Psychometrika, Springer;The Psychometric Society, vol. 60(4), pages 505-521, December.
    5. Pieter Kroonenberg & Jan Leeuw, 1980. "Principal component analysis of three-mode data by means of alternating least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 69-97, March.
    6. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Mechelen, Iven & Schepers, Jan, 2007. "A unifying model involving a categorical and/or dimensional reduction for multimode data," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 537-549, September.
    2. Tom Wilderjans & E. Ceulemans & I. Mechelen, 2012. "The SIMCLAS Model: Simultaneous Analysis of Coupled Binary Data Matrices with Noise Heterogeneity Between and Within Data Blocks," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 724-740, October.
    3. Iven Mechelen & Luigi Lombardi & Eva Ceulemans, 2007. "Hierarchical Classes Modeling of Rating Data," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 475-488, December.
    4. Eva Ceulemans & Iven Mechelen & Iwin Leenen, 2007. "The Local Minima Problem in Hierarchical Classes Analysis: An Evaluation of a Simulated Annealing Algorithm and Various Multistart Procedures," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 377-391, September.
    5. Iwin Leenen & Iven Mechelen & Andrew Gelman & Stijn Knop, 2008. "Bayesian Hierarchical Classes Analysis," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 39-64, March.
    6. Eva Ceulemans & Iven Mechelen, 2004. "Tucker2 hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 375-399, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iwin Leenen & Iven Mechelen & Andrew Gelman & Stijn Knop, 2008. "Bayesian Hierarchical Classes Analysis," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 39-64, March.
    2. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    3. Iwin Leenen & Iven Mechelen & Paul Boeck, 2001. "Models for ordinal hierarchical classes analysis," Psychometrika, Springer;The Psychometric Society, vol. 66(3), pages 389-403, September.
    4. Van Mechelen, Iven & Schepers, Jan, 2007. "A unifying model involving a categorical and/or dimensional reduction for multimode data," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 537-549, September.
    5. Pieter C. Schoonees & Patrick J. F. Groenen & Michel Velden, 2022. "Least-squares bilinear clustering of three-way data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 1001-1037, December.
    6. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    7. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    8. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    9. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.
    10. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    11. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    12. Eva Ceulemans & Iven Mechelen, 2005. "Hierarchical classes models for three-way three-mode binary data: interrelations and model selection," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 461-480, September.
    13. Piet Brouwer & Pieter Kroonenberg, 1991. "Some notes on the diagonalization of the extended three-mode core matrix," Journal of Classification, Springer;The Classification Society, vol. 8(1), pages 93-98, January.
    14. Krijnen, Wim P., 2006. "Convergence of the sequence of parameters generated by alternating least squares algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 481-489, November.
    15. Nadja Bodner & Laura Bringmann & Francis Tuerlinckx & Peter Jonge & Eva Ceulemans, 2022. "ConNEcT: A Novel Network Approach for Investigating the Co-occurrence of Binary Psychopathological Symptoms Over Time," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 107-132, March.
    16. Donatella Vicari & Paolo Giordani, 2023. "CPclus: Candecomp/Parafac Clustering Model for Three-Way Data," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 432-465, July.
    17. Michel Velden & Tammo Bijmolt, 2006. "Generalized canonical correlation analysis of matrices with missing rows: a simulation study," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 323-331, June.
    18. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    19. Alwin Stegeman & Tam Lam, 2014. "Three-Mode Factor Analysis by Means of Candecomp/Parafac," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 426-443, July.
    20. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:68:y:2003:i:3:p:413-433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.