IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v22y2019i5d10.1007_s10951-019-00611-z.html
   My bibliography  Save this article

A decomposition-based approach to the scheduling of identical automated yard cranes at container terminals

Author

Listed:
  • Amelie Eilken

    (University of Hamburg)

Abstract

In today’s ports, the storage area is often the bottleneck in the serving of a vessel. It is therefore an important influencing factor in the minimization of the turnaround time of the vessels, which is the main objective in operational planning in container terminals. The operational planning of the yard cranes strongly impacts the yard’s efficiency. This planning task comprises the assignment of jobs to cranes, the sequencing of jobs per crane and the scheduling of crane movement and job executions subject to time windows and precedence constraints. A common yard configuration is a block storage system with two identical automated gantry cranes, called twin cranes. These cranes are subject to non-crossing constraints and therefore often exclusively serve either the landside or the seaside of the terminal. A polynomial-time algorithm for the scheduling subproblem of the cranes is introduced. As the sequencing and assignment part of this planning task is NP-hard, the overall problem is solved heuristically with a branch and bound procedure that includes the introduced scheduling algorithm as an evaluation subroutine. A computational study is presented to test the performance of this approach against a mathematical program solved by CPLEX.

Suggested Citation

  • Amelie Eilken, 2019. "A decomposition-based approach to the scheduling of identical automated yard cranes at container terminals," Journal of Scheduling, Springer, vol. 22(5), pages 517-541, October.
  • Handle: RePEc:spr:jsched:v:22:y:2019:i:5:d:10.1007_s10951-019-00611-z
    DOI: 10.1007/s10951-019-00611-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-019-00611-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-019-00611-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kress, Dominik & Dornseifer, Jan & Jaehn, Florian, 2019. "An exact solution approach for scheduling cooperative gantry cranes," European Journal of Operational Research, Elsevier, vol. 273(1), pages 82-101.
    2. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    3. Briskorn, Dirk & Emde, Simon & Boysen, Nils, 2016. "Cooperative twin-crane scheduling," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 109733, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    5. Li, Wenkai & Wu, Yong & Petering, M.E.H. & Goh, Mark & Souza, Robert de, 2009. "Discrete time model and algorithms for container yard crane scheduling," European Journal of Operational Research, Elsevier, vol. 198(1), pages 165-172, October.
    6. Briskorn, Dirk & Emde, Simon & Boysen, Nils, 2016. "Cooperative twin-crane scheduling," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 80780, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    8. Boysen, Nils & Stephan, Konrad, 2016. "A survey on single crane scheduling in automated storage/retrieval systems," European Journal of Operational Research, Elsevier, vol. 254(3), pages 691-704.
    9. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    10. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    11. Ng, W. C., 2005. "Crane scheduling in container yards with inter-crane interference," European Journal of Operational Research, Elsevier, vol. 164(1), pages 64-78, July.
    12. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
    13. Kap Hwan Kim & Ki Young Kim, 1999. "An Optimal Routing Algorithm for a Transfer Crane in Port Container Terminals," Transportation Science, INFORMS, vol. 33(1), pages 17-33, February.
    14. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    15. Yong Wu & Wenkai Li & Matthew E. H. Petering & Mark Goh & Robert de Souza, 2015. "Scheduling Multiple Yard Cranes with Crane Interference and Safety Distance Requirement," Transportation Science, INFORMS, vol. 49(4), pages 990-1005, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hang Yu & Yiyun Deng & Leijie Zhang & Xin Xiao & Caimao Tan, 2022. "Yard Operations and Management in Automated Container Terminals: A Review," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    2. Dirk Briskorn, 2021. "Routing two stacking cranes with predetermined container sequences," Journal of Scheduling, Springer, vol. 24(4), pages 367-380, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    2. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    3. Lennart Zey & Dirk Briskorn & Nils Boysen, 2022. "Twin-crane scheduling during seaside workload peaks with a dedicated handshake area," Journal of Scheduling, Springer, vol. 25(1), pages 3-34, February.
    4. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    5. Dirk Briskorn, 2021. "Routing two stacking cranes with predetermined container sequences," Journal of Scheduling, Springer, vol. 24(4), pages 367-380, August.
    6. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
    7. Wang, Mengyao & Zhou, Chenhao & Wang, Aihu, 2022. "A cluster-based yard template design integrated with yard crane deployment using a placement heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    8. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    9. Kress, Dominik & Dornseifer, Jan & Jaehn, Florian, 2019. "An exact solution approach for scheduling cooperative gantry cranes," European Journal of Operational Research, Elsevier, vol. 273(1), pages 82-101.
    10. Dirk Briskorn & Florian Jaehn & Andreas Wiehl, 2019. "A generator for test instances of scheduling problems concerning cranes in transshipment terminals," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 45-69, March.
    11. Gharehgozli, Amir & Xu, Chao & Zhang, Wenda, 2021. "High multiplicity asymmetric traveling salesman problem with feedback vertex set and its application to storage/retrieval system," European Journal of Operational Research, Elsevier, vol. 289(2), pages 495-507.
    12. Vallada, Eva & Belenguer, Jose Manuel & Villa, Fulgencia & Alvarez-Valdes, Ramon, 2023. "Models and algorithms for a yard crane scheduling problem in container ports," European Journal of Operational Research, Elsevier, vol. 309(2), pages 910-924.
    13. Sumin Chen & Qingcheng Zeng & Yushan Hu, 2022. "Scheduling optimization for two crossover automated stacking cranes considering relocation," Operational Research, Springer, vol. 22(3), pages 2099-2120, July.
    14. Florian Jaehn & Andreas Wiehl, 2020. "Approximation algorithms for the twin robot scheduling problem," Journal of Scheduling, Springer, vol. 23(1), pages 117-133, February.
    15. Lashkari, Shabnam & Wu, Yong & Petering, Matthew E.H., 2017. "Sequencing dual-spreader crane operations: Mathematical formulation and heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 262(2), pages 521-534.
    16. Ehleiter, Anne & Jaehn, Florian, 2016. "Housekeeping: Foresightful container repositioning," International Journal of Production Economics, Elsevier, vol. 179(C), pages 203-211.
    17. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    18. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    19. Xiao-Ming Yang & Xin-Jia Jiang, 2020. "Yard Crane Scheduling in the Ground Trolley-Based Automated Container Terminal," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(02), pages 1-28, March.
    20. Dirk Briskorn & Lennart Zey, 2020. "Interference aware scheduling of triple-crossover-cranes," Journal of Scheduling, Springer, vol. 23(4), pages 465-485, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:22:y:2019:i:5:d:10.1007_s10951-019-00611-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.