IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v49y2001i6p854-865.html
   My bibliography  Save this article

Generating Experimental Data for Computational Testing with Machine Scheduling Applications

Author

Listed:
  • Nicholas G. Hall

    (Fisher College of Business, Department of Management Sciences, The Ohio State University, Columbus, Ohio 43210-1399)

  • Marc E. Posner

    (Department of Industrial and Systems Engineering, The Ohio State University, Columbus, Ohio 43210-1271)

Abstract

The operations research literature provides little guidance about how data should be generated for the computational testing of algorithms or heuristic procedures. We discuss several widely used data generation schemes, and demonstrate that they may introduce biases into computational results. Moreover, such schemes are often not representative of the way data arises in practical situations. We address these deficiencies by describing several principles for data generation and several properties that are desirable in a generation scheme. This enables us to provide specific proposals for the generation of a variety of machine scheduling problems. We present a generation scheme for precedence constraints that achieves a target density which is uniform in the precedence constraint graph. We also present a generation scheme that explicitly considers the correlation of routings in a job shop. We identify several related issues that may influence the design of a data generation scheme. Finally, two case studies illustrate, for specific scheduling problems, how our proposals can be implemented to design a data generation scheme.

Suggested Citation

  • Nicholas G. Hall & Marc E. Posner, 2001. "Generating Experimental Data for Computational Testing with Machine Scheduling Applications," Operations Research, INFORMS, vol. 49(6), pages 854-865, December.
  • Handle: RePEc:inm:oropre:v:49:y:2001:i:6:p:854-865
    DOI: 10.1287/opre.49.6.854.10014
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.49.6.854.10014
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.49.6.854.10014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Catherine C. McGeoch, 1996. "Feature Article---Toward an Experimental Method for Algorithm Simulation," INFORMS Journal on Computing, INFORMS, vol. 8(1), pages 1-15, February.
    2. Peng Si Ow, 1985. "Focused Scheduling in Proportionate Flowshops," Management Science, INFORMS, vol. 31(7), pages 852-869, July.
    3. J. N. Hooker, 1994. "Needed: An Empirical Science of Algorithms," Operations Research, INFORMS, vol. 42(2), pages 201-212, April.
    4. Marshall L. Fisher, 1980. "Worst-Case Analysis of Heuristic Algorithms," Management Science, INFORMS, vol. 26(1), pages 1-17, January.
    5. E. Demeulemeester & B. Dodin & W. Herroelen, 1993. "A Random Activity Network Generator," Operations Research, INFORMS, vol. 41(5), pages 972-980, October.
    6. C. N. Potts & L. N. Van Wassenhove, 1988. "Algorithms for Scheduling a Single Machine to Minimize the Weighted Number of Late Jobs," Management Science, INFORMS, vol. 34(7), pages 843-858, July.
    7. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.
    8. Potts, C. N. & Van Wassenhove, L. N., 1983. "An algorithm for single machine sequencing with deadlines to minimize total weighted completion time," European Journal of Operational Research, Elsevier, vol. 12(4), pages 379-387, April.
    9. Marc E. Posner, 1986. "A Sequencing Problem with Release Dates and Clustered Jobs," Management Science, INFORMS, vol. 32(6), pages 731-738, June.
    10. Harvey J. Greenberg, 1990. "Computational Testing: Why, How and How Much," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 94-97, February.
    11. Robert H. Storer & S. David Wu & Renzo Vaccari, 1992. "New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling," Management Science, INFORMS, vol. 38(10), pages 1495-1509, October.
    12. Mark Fleischer & Sheldon H. Jacobson, 1999. "Information Theory and the Finite-Time Behavior of the Simulated Annealing Algorithm: Experimental Results," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 35-43, February.
    13. C. N. Potts, 1985. "A Lagrangean Based Branch and Bound Algorithm for Single Machine Sequencing with Precedence Constraints to Minimize Total Weighted Completion Time," Management Science, INFORMS, vol. 31(10), pages 1300-1311, October.
    14. Charles E. Clark, 1962. "Letter to the Editor---The PERT Model for the Distribution of an Activity Time," Operations Research, INFORMS, vol. 10(3), pages 405-406, June.
    15. Lu Lu & Marc E. Posner, 1993. "An NP-Hard Open Shop Scheduling Problem with Polynomial Average Time Complexity," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 12-38, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akturk, M. Selim & Ozdemir, Deniz, 2001. "A new dominance rule to minimize total weighted tardiness with unequal release dates," European Journal of Operational Research, Elsevier, vol. 135(2), pages 394-412, December.
    2. Marie Coffin & Matthew J. Saltzman, 2000. "Statistical Analysis of Computational Tests of Algorithms and Heuristics," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 24-44, February.
    3. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    4. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    5. Mastrolilli, Monaldo & Bianchi, Leonora, 2005. "Core instances for testing: A case study," European Journal of Operational Research, Elsevier, vol. 166(1), pages 51-62, October.
    6. Andrzej Bożek, 2020. "Energy Cost-Efficient Task Positioning in Manufacturing Systems," Energies, MDPI, vol. 13(19), pages 1-21, September.
    7. Felipe Campelo & Elizabeth F. Wanner, 2020. "Sample size calculations for the experimental comparison of multiple algorithms on multiple problem instances," Journal of Heuristics, Springer, vol. 26(6), pages 851-883, December.
    8. Bahman Naderi & Rubén Ruiz & Vahid Roshanaei, 2023. "Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 817-843, July.
    9. Jelke J. Hoorn, 2018. "The Current state of bounds on benchmark instances of the job-shop scheduling problem," Journal of Scheduling, Springer, vol. 21(1), pages 127-128, February.
    10. Kim, Yeong-Dae & Lim, Hyeong-Gyu & Park, Moon-Won, 1996. "Search heuristics for a flowshop scheduling problem in a printed circuit board assembly process," European Journal of Operational Research, Elsevier, vol. 91(1), pages 124-143, May.
    11. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    12. Belarmino Adenso-Díaz & Manuel Laguna, 2006. "Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search," Operations Research, INFORMS, vol. 54(1), pages 99-114, February.
    13. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    14. Chung, Chia-Shin & Flynn, James & Kirca, Omer, 2002. "A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems," International Journal of Production Economics, Elsevier, vol. 79(3), pages 185-196, October.
    15. Tzafestas, Spyros & Triantafyllakis, Alekos, 1993. "Deterministic scheduling in computing and manufacturing systems: a survey of models and algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(5), pages 397-434.
    16. Raymond R. Hill & Charles H. Reilly, 2000. "The Effects of Coefficient Correlation Structure in Two-Dimensional Knapsack Problems on Solution Procedure Performance," Management Science, INFORMS, vol. 46(2), pages 302-317, February.
    17. Reilly, Charles H. & Sapkota, Nabin, 2015. "A family of composite discrete bivariate distributions with uniform marginals for simulating realistic and challenging optimization-problem instances," European Journal of Operational Research, Elsevier, vol. 241(3), pages 642-652.
    18. Charles H. Reilly, 2009. "Synthetic Optimization Problem Generation: Show Us the Correlations!," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 458-467, August.
    19. Yalaoui, F. & Chu, C., 2006. "New exact method to solve the Pm/rj/[summation operator]Cj schedule problem," International Journal of Production Economics, Elsevier, vol. 100(1), pages 168-179, March.
    20. Sergei Sabanov & Abdullah Rasheed Qureshi & Zhaudir Dauitbay & Gulim Kurmangazy, 2023. "A Method for the Modified Estimation of Oil Shale Mineable Reserves for Shale Oil Projects: A Case Study," Energies, MDPI, vol. 16(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:49:y:2001:i:6:p:854-865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.