IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v53y2016i4d10.1007_s12597-016-0256-7.html
   My bibliography  Save this article

Simplex particle swarm optimization with arithmetical crossover for solving global optimization problems

Author

Listed:
  • Mohamed A. Tawhid

    (Thompson Rivers University
    Alexandria University)

  • Ahmed F. Ali

    (Thompson Rivers University
    Suez Canal University)

Abstract

In this paper, we propose a new hybrid algorithm by combining the particle swarm optimization with a genetic arithmetical crossover operator after applying a modification on it in order to avoid the problem of stagnation and premature convergence of the population. In the final stage of the algorithm, we applied the Nelder-Mead method as a local search method in order to accelerate the convergence and avoid running the algorithm without any improvements in the results. We call the new proposed algorithm by simplex particle swarm optimization with a modified arithmetical crossover (SPSOAC). We test SPSOAC on 7 integer programming optimization benchmark functions, 10 minimax problems and 10 CEC05 functions. We present the general performance of the proposed algorithm by comparing SPSOAC against 13 benchmark algorithms. The Experiments results show the proposed algorithm is a promising algorithm and has a powerful performance.

Suggested Citation

  • Mohamed A. Tawhid & Ahmed F. Ali, 2016. "Simplex particle swarm optimization with arithmetical crossover for solving global optimization problems," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 705-740, December.
  • Handle: RePEc:spr:opsear:v:53:y:2016:i:4:d:10.1007_s12597-016-0256-7
    DOI: 10.1007/s12597-016-0256-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-016-0256-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-016-0256-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    2. Y. Petalas & K. Parsopoulos & M. Vrahatis, 2007. "Memetic particle swarm optimization," Annals of Operations Research, Springer, vol. 156(1), pages 99-127, December.
    3. Chang, Wei-Der, 2009. "PID control for chaotic synchronization using particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 910-917.
    4. E. Polak & J. O. Royset & R. S. Womersley, 2003. "Algorithms with Adaptive Smoothing for Finite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 459-484, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed A. Tawhid & Ahmed F. Ali, 2017. "Multi-directional bat algorithm for solving unconstrained optimization problems," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 684-705, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coşar Gözükırmızı & Metin Demiralp, 2019. "Solving ODEs by Obtaining Purely Second Degree Multinomials via Branch and Bound with Admissible Heuristic," Mathematics, MDPI, vol. 7(4), pages 1-23, April.
    2. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    3. Ivona Brajević, 2021. "A Shuffle-Based Artificial Bee Colony Algorithm for Solving Integer Programming and Minimax Problems," Mathematics, MDPI, vol. 9(11), pages 1-20, May.
    4. Kezong Tang & Xiong-Fei Wei & Yuan-Hao Jiang & Zi-Wei Chen & Lihua Yang, 2023. "An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem," Mathematics, MDPI, vol. 11(21), pages 1-26, October.
    5. B. Rustem & S. Žaković & P. Parpas, 2008. "Convergence of an Interior Point Algorithm for Continuous Minimax," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 87-103, January.
    6. Amine Lamine & Mahdi Khemakhem & Brahim Hnich & Habib Chabchoub, 2016. "Solving constrained optimization problems by solution-based decomposition search," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 672-695, October.
    7. W. Hare & J. Nutini, 2013. "A derivative-free approximate gradient sampling algorithm for finite minimax problems," Computational Optimization and Applications, Springer, vol. 56(1), pages 1-38, September.
    8. Weiqiang Pan & Zhilong Shan & Ting Chen & Fangjiong Chen & Jing Feng, 2016. "Optimal pilot design for OFDM systems with non-contiguous subcarriers based on semi-definite programming," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(2), pages 297-305, October.
    9. Zhang, Zijun & Kusiak, Andrew & Song, Zhe, 2013. "Scheduling electric power production at a wind farm," European Journal of Operational Research, Elsevier, vol. 224(1), pages 227-238.
    10. E. Polak & R. S. Womersley & H. X. Yin, 2008. "An Algorithm Based on Active Sets and Smoothing for Discretized Semi-Infinite Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 311-328, August.
    11. Drexl, Andreas, 1990. "Scheduling of project networks by job assignment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 247, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    12. Yi-Feng Hung & Wei-Chih Chen, 2011. "A heterogeneous cooperative parallel search of branch-and-bound method and tabu search algorithm," Journal of Global Optimization, Springer, vol. 51(1), pages 133-148, September.
    13. Fox, B. L. & Lenstra, J. K. & Rinnooy Kan, A. H. G. & Schrage, L. E., 1977. "Branching From The Largest Upper Bound: Folklore And Facts," Econometric Institute Archives 272158, Erasmus University Rotterdam.
    14. Sarita Devi & Deepika Garg, 2020. "Hybrid genetic and particle swarm algorithm: redundancy allocation problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 313-319, April.
    15. Thomas L. Morin & Roy E. Marsten, 1974. "Brand-and-Bound Strategies for Dynamic Programming," Discussion Papers 106, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    16. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    17. Sacchelli, S. & Fabbrizzi, S., 2015. "Minimisation of uncertainty in decision-making processes using optimised probabilistic Fuzzy Cognitive Maps: A case study for a rural sector," Socio-Economic Planning Sciences, Elsevier, vol. 52(C), pages 31-40.
    18. Hu, Xiaoxuan & Zhu, Waiming & Ma, Huawei & An, Bo & Zhi, Yanling & Wu, Yi, 2021. "Orientational variable-length strip covering problem: A branch-and-price-based algorithm," European Journal of Operational Research, Elsevier, vol. 289(1), pages 254-269.
    19. Notte, Gastón & Pedemonte, Martín & Cancela, Héctor & Chilibroste, Pablo, 2016. "Resource allocation in pastoral dairy production systems: Evaluating exact and genetic algorithms approaches," Agricultural Systems, Elsevier, vol. 148(C), pages 114-123.
    20. Chao Zhang & Zihao Zhang & Mihai Cucuringu & Stefan Zohren, 2021. "A Universal End-to-End Approach to Portfolio Optimization via Deep Learning," Papers 2111.09170, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:53:y:2016:i:4:d:10.1007_s12597-016-0256-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.