IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v69y2017i3d10.1007_s10898-017-0508-y.html
   My bibliography  Save this article

On parallel Branch and Bound frameworks for Global Optimization

Author

Listed:
  • Juan F. R. Herrera

    (The University of Edinburgh)

  • José M. G. Salmerón

    (University of Almeria (ceiA3))

  • Eligius M. T. Hendrix

    (Universidad de Málaga
    Wageningen University)

  • Rafael Asenjo

    (Universidad de Málaga)

  • Leocadio G. Casado

    (University of Almeria (ceiA3))

Abstract

Branch and Bound (B&B) algorithms are known to exhibit an irregularity of the search tree. Therefore, developing a parallel approach for this kind of algorithms is a challenge. The efficiency of a B&B algorithm depends on the chosen Branching, Bounding, Selection, Rejection, and Termination rules. The question we investigate is how the chosen platform consisting of programming language, used libraries, or skeletons influences programming effort and algorithm performance. Selection rule and data management structures are usually hidden to programmers for frameworks with a high level of abstraction, as well as the load balancing strategy, when the algorithm is run in parallel. We investigate the question by implementing a multidimensional Global Optimization B&B algorithm with the help of three frameworks with a different level of abstraction (from more to less): Bobpp, Threading Building Blocks (TBB), and a customized Pthread implementation. The following has been found. The Bobpp implementation is easy to code, but exhibits the poorest scalability. On the contrast, the TBB and Pthread implementations scale almost linearly on the used platform. The TBB approach shows a slightly better productivity.

Suggested Citation

  • Juan F. R. Herrera & José M. G. Salmerón & Eligius M. T. Hendrix & Rafael Asenjo & Leocadio G. Casado, 2017. "On parallel Branch and Bound frameworks for Global Optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 547-560, November.
  • Handle: RePEc:spr:jglopt:v:69:y:2017:i:3:d:10.1007_s10898-017-0508-y
    DOI: 10.1007/s10898-017-0508-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0508-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0508-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernard Gendron & Teodor Gabriel Crainic, 1994. "Parallel Branch-and-Branch Algorithms: Survey and Synthesis," Operations Research, INFORMS, vol. 42(6), pages 1042-1066, December.
    2. Eligius M.T. Hendrix & Boglárka G.-Tóth, 2010. "Introduction to Nonlinear and Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-88670-1, December.
    3. Julius Žilinskas, 2012. "Parallel branch and bound for multidimensional scaling with city-block distances," Journal of Global Optimization, Springer, vol. 54(2), pages 261-274, October.
    4. A. Brüngger & A. Marzetta & K. Fukuda & J. Nievergelt, 1999. "The parallel search bench ZRAM and its applications," Annals of Operations Research, Springer, vol. 90(0), pages 45-63, January.
    5. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stripinis, Linas & Žilinskas, Julius & Casado, Leocadio G. & Paulavičius, Remigijus, 2021. "On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    2. Schryen, Guido, 2020. "Parallel computational optimization in operations research: A new integrative framework, literature review and research directions," European Journal of Operational Research, Elsevier, vol. 287(1), pages 1-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kezong Tang & Xiong-Fei Wei & Yuan-Hao Jiang & Zi-Wei Chen & Lihua Yang, 2023. "An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem," Mathematics, MDPI, vol. 11(21), pages 1-26, October.
    2. van Dijk, Diana & Hendrix, Eligius M.T. & Haijema, Rene & Groeneveld, Rolf A. & van Ierland, Ekko C., 2014. "On solving a bi-level stochastic dynamic programming model for analyzing fisheries policies: Fishermen behavior and optimal fish quota," Ecological Modelling, Elsevier, vol. 272(C), pages 68-75.
    3. Weiqiang Pan & Zhilong Shan & Ting Chen & Fangjiong Chen & Jing Feng, 2016. "Optimal pilot design for OFDM systems with non-contiguous subcarriers based on semi-definite programming," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(2), pages 297-305, October.
    4. Y. Xu & T. K. Ralphs & L. Ladányi & M. J. Saltzman, 2009. "Computational Experience with a Software Framework for Parallel Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 383-397, August.
    5. Carrizosa, Emilio & Guerrero, Vanesa & Romero Morales, Dolores, 2018. "On Mathematical Optimization for the visualization of frequencies and adjacencies as rectangular maps," European Journal of Operational Research, Elsevier, vol. 265(1), pages 290-302.
    6. Fox, B. L. & Lenstra, J. K. & Rinnooy Kan, A. H. G. & Schrage, L. E., 1977. "Branching From The Largest Upper Bound: Folklore And Facts," Econometric Institute Archives 272158, Erasmus University Rotterdam.
    7. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    8. Julius Žilinskas, 2012. "Parallel branch and bound for multidimensional scaling with city-block distances," Journal of Global Optimization, Springer, vol. 54(2), pages 261-274, October.
    9. Eva K. Lee, 2004. "Generating Cutting Planes for Mixed Integer Programming Problems in a Parallel Computing Environment," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 3-26, February.
    10. Notte, Gastón & Pedemonte, Martín & Cancela, Héctor & Chilibroste, Pablo, 2016. "Resource allocation in pastoral dairy production systems: Evaluating exact and genetic algorithms approaches," Agricultural Systems, Elsevier, vol. 148(C), pages 114-123.
    11. Gautam Mitra & Frank Ellison & Alan Scowcroft, 2007. "Quadratic programming for portfolio planning: Insights into algorithmic and computational issues Part II — Processing of portfolio planning models with discrete constraints," Journal of Asset Management, Palgrave Macmillan, vol. 8(4), pages 249-258, November.
    12. Le‐Yu Chen & Sokbae Lee, 2018. "Exact computation of GMM estimators for instrumental variable quantile regression models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 553-567, June.
    13. Efrat Taig & Ohad Ben-Shahar, 2019. "Gradient Surfing: A New Deterministic Approach for Low-Dimensional Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 855-878, March.
    14. Mhand Hifi & Toufik Saadi, 2012. "A parallel algorithm for two-staged two-dimensional fixed-orientation cutting problems," Computational Optimization and Applications, Springer, vol. 51(2), pages 783-807, March.
    15. Lahrichi, Nadia & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter & Crişan, Gloria Cerasela & Vidal, Thibaut, 2015. "An integrative cooperative search framework for multi-decision-attribute combinatorial optimization: Application to the MDPVRP," European Journal of Operational Research, Elsevier, vol. 246(2), pages 400-412.
    16. Dingding Qi & Yingjun Zhao & Zhengjun Wang & Wei Wang & Li Pi & Longyue Li, 2024. "Joint Approach for Vehicle Routing Problems Based on Genetic Algorithm and Graph Convolutional Network," Mathematics, MDPI, vol. 12(19), pages 1-18, October.
    17. Moody Chu & Matthew Lin & Liqi Wang, 2014. "A study of singular spectrum analysis with global optimization techniques," Journal of Global Optimization, Springer, vol. 60(3), pages 551-574, November.
    18. Ana Rocha & M. Costa & Edite Fernandes, 2014. "A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues," Journal of Global Optimization, Springer, vol. 60(2), pages 239-263, October.
    19. Ekart, Aniko & Nemeth, S. Z., 2005. "Stability analysis of tree structured decision functions," European Journal of Operational Research, Elsevier, vol. 160(3), pages 676-695, February.
    20. Rosato, Paolo & Stellin, Giuseppe, 1995. "MULTI CRITERIA ANALYSIS IN FARM MANAGEMENT FOLLOWING THE COMMON AGRICULTURAL POLICY REFORM: AN APPLICATION OF MULTI-OBJECTIVE INTEGER LINEAR PROGRAMMING; Proceedings of the 4th Minnesota Padova Confer," Working Papers 14414, University of Minnesota, Center for International Food and Agricultural Policy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:69:y:2017:i:3:d:10.1007_s10898-017-0508-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.