Author
Listed:
- Ding, Jianpeng
- Lei, Youming
- Xie, Jianfei
- Small, Michael
Abstract
When synchronizing two continuous typical chaotic systems, the state variables of the response system are usually bounded and satisfy the Lipschitz condition. This permits a universal synchronization method. In the synchronization of two high-dimensional discrete chaotic systems such as the coupled map lattice systems, the state variables of the response system often diverge, which makes it difficult to seek a universal synchronization method. To overcome this difficulty, bounded and hard constraints, which correspond to the concept of safety level III in reinforcement learning terms, on the state variables must be imposed, when the discrete response system is perturbed. We propose a universal method for synchronizing two discrete systems based on safe reinforcement learning (RL). In this method, the RL agent’s policy is used to reach the goal of synchronization and a safety layer added directly on top of the policy is used to satisfy safety level III. The safety layer consists of a one-step predictor for the perturbed response system and an action correction formulation. The one-step predictor, based on a next generation reservoir computing, is used to identify whether the next state of the perturbed system is within the chaotic domain, and if not, the action correction formula is activated to modify the corresponding perturbing force component to zero. In this way, the state of the perturbed system will remain in the bounded chaotic domain. We demonstrate that the proposed method succeeds in synchronization without divergence through a numerical example with two coupled map lattice systems, and the average synchronization time is 12.66 iteration steps over 1000 different initial conditions. The method works even when parameter mismatches and disturbances exist in the system. We compare the performance in both cases with and without the safety layer and find that successful synchronization is only possible in the former case, emphasizing the significance of the safety layer. The performance of the algorithm with optimal hyper-parameters obtained by Bayesian optimization is robust and stable.
Suggested Citation
Ding, Jianpeng & Lei, Youming & Xie, Jianfei & Small, Michael, 2024.
"Chaos synchronization of two coupled map lattice systems using safe reinforcement learning,"
Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
Handle:
RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007938
DOI: 10.1016/j.chaos.2024.115241
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007938. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.