IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v89y2019icp40-53.html
   My bibliography  Save this article

A partially observable Markov chain framework to estimate overdiagnosis risk in breast cancer screening: Incorporating uncertainty in patients adherence behaviors

Author

Listed:
  • Molani, Sevda
  • Madadi, Mahboubeh
  • Wilkes, Wesley

Abstract

Overdiagnosis is the diagnosis of a medical condition that would never have caused any symptoms or problems in a patient’s lifetime if left undetected. Although overdiagnosis is known to be the major risk inherent in mammography screening; currently there is no way to distinguish between overdiagnosed cancers and the ones that would cause problems over a patient’s lifetime. Therefore, the extent of overdiagnosis risk must be estimated indirectly. This and the limitations in previous studies on quantification of overdiagnosis cause a wide variation in the estimation of this risk. In this study, we develop a stochastic framework, which eliminates some of the limitations of the previous studies, to estimate various measures of overdiagnosis. We introduce different measures of overdiagnosis risk including age and stage-specific overdiagnosis risks, as well as the lifetime overdiagnosis risk. Moreover, overdiagnosis risk significantly depends on a patient’s compliance with screening recommendations. Specifically, we develop two partially observable Markov chains to quantify the risks associated with various screening policies while considering the uncertainty in a patient’s adherence behavior. Our results show that overdiagnosis risk is a function of a patient’s age at diagnosis, as well as the number, frequency, and distribution of screening tests over a patient’s lifetime. Further, the results suggest that detecting breast cancer in early stages poses a higher risk of overdiagnosis than detection in advanced stages. A harm-benefit analysis is also performed to compare the overdiagnosis risk with the benefits that breast cancer screening provides. Our results show that, although overdiagnosis rate is relatively high in breast cancer screening, the benefits of breast cancer mammography screening outweigh the overdiagnosis risk.

Suggested Citation

  • Molani, Sevda & Madadi, Mahboubeh & Wilkes, Wesley, 2019. "A partially observable Markov chain framework to estimate overdiagnosis risk in breast cancer screening: Incorporating uncertainty in patients adherence behaviors," Omega, Elsevier, vol. 89(C), pages 40-53.
  • Handle: RePEc:eee:jomega:v:89:y:2019:i:c:p:40-53
    DOI: 10.1016/j.omega.2018.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504831830001X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    2. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    2. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    3. Dan Andrei Iancu & Nikolaos Trichakis & Do Young Yoon, 2021. "Monitoring with Limited Information," Management Science, INFORMS, vol. 67(7), pages 4233-4251, July.
    4. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    5. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.
    6. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout & Elizabeth S. Burnside, 2016. "Heterogeneity in Women’s Adherence and Its Role in Optimal Breast Cancer Screening Policies," Management Science, INFORMS, vol. 62(5), pages 1339-1362, May.
    7. Hui Zhang & Christian Wernz & Danny R. Hughes, 2018. "A Stochastic Game Analysis of Incentives and Behavioral Barriers in Chronic Disease Management," Service Science, INFORMS, vol. 10(3), pages 302-319, September.
    8. Mehmet U. S. Ayvaci & Oguzhan Alagoz & Elizabeth S. Burnside, 2012. "The Effect of Budgetary Restrictions on Breast Cancer Diagnostic Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 600-617, October.
    9. Mehmet A. Ergun & Ali Hajjar & Oguzhan Alagoz & Murtuza Rampurwala, 2022. "Optimal breast cancer risk reduction policies tailored to personal risk level," Health Care Management Science, Springer, vol. 25(3), pages 363-388, September.
    10. Turgay Ayer, 2015. "Inverse optimization for assessing emerging technologies in breast cancer screening," Annals of Operations Research, Springer, vol. 230(1), pages 57-85, July.
    11. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    12. Laura McLay & Christodoulos Foufoulides & Jason Merrick, 2010. "Using simulation-optimization to construct screening strategies for cervical cancer," Health Care Management Science, Springer, vol. 13(4), pages 294-318, December.
    13. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    14. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    15. Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
    16. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    17. Raha Akhavan-Tabatabaei & Diana Marcela Sánchez & Thomas G. Yeung, 2017. "A Markov Decision Process Model for Cervical Cancer Screening Policies in Colombia," Medical Decision Making, , vol. 37(2), pages 196-211, February.
    18. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
    19. Daniel Underwood & Jingyu Zhang & Brian Denton & Nilay Shah & Brant Inman, 2012. "Simulation optimization of PSA-threshold based prostate cancer screening policies," Health Care Management Science, Springer, vol. 15(4), pages 293-309, December.
    20. James F. O’Mahony & Joost van Rosmalen & Nino A. Mushkudiani & Frans-Willem Goudsmit & Marinus J. C. Eijkemans & Eveline A. M. Heijnsdijk & Ewout W. Steyerberg & J. Dik F. Habbema, 2015. "The Influence of Disease Risk on the Optimal Time Interval between Screens for the Early Detection of Cancer," Medical Decision Making, , vol. 35(2), pages 183-195, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:89:y:2019:i:c:p:40-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.