IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v45y2014i8p1668-1682.html
   My bibliography  Save this article

Multi-objective solid transportation problems with budget constraint in uncertain environment

Author

Listed:
  • Pradip Kundu
  • Samarjit Kar
  • Manoranjan Maiti

Abstract

This paper investigates multi-objective solid transportation problems (MOSTP) under various uncertain environments. The unit transportation penalties/costs are taken as random, fuzzy and hybrid variables respectively, in three different uncertain multi-objective solid transportation models and in each case, the supplies, demands and conveyance capacities are fuzzy. Also, apart from source, demand and capacity constraints, an extra constraint on the total budget at each destination is imposed. Chance-constrained programming technique has been used for the first two models to obtain crisp equivalent forms, whereas expected value model is formulated for the last. We provide an another approach using the interval approximation of fuzzy numbers for the first model to obtain its crisp form and compare numerically two approaches for this model. Fuzzy programming technique and a gradient based optimisation - generalised reduced gradient (GRG) method are applied to beget the optimal solutions. Three numerical examples are provided to illustrate the models and programming.

Suggested Citation

  • Pradip Kundu & Samarjit Kar & Manoranjan Maiti, 2014. "Multi-objective solid transportation problems with budget constraint in uncertain environment," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(8), pages 1668-1682, August.
  • Handle: RePEc:taf:tsysxx:v:45:y:2014:i:8:p:1668-1682
    DOI: 10.1080/00207721.2012.748944
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2012.748944
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2012.748944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hailin Wu & Fengming Tao & Qingqing Qiao & Mengjun Zhang, 2020. "A Chance-Constrained Vehicle Routing Problem for Wet Waste Collection and Transportation Considering Carbon Emissions," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    2. Totan Garai & Dipankar Chakraborty & Tapan Kumar Roy, 2019. "Multi-objective Inventory Model with Both Stock-Dependent Demand Rate and Holding Cost Rate Under Fuzzy Random Environment," Annals of Data Science, Springer, vol. 6(1), pages 61-81, March.
    3. Deepika Rani & T. R. Gulati & Amit Kumar, 2015. "On Fuzzy Multiobjective Multi-Item Solid Transportation Problem," Journal of Optimization, Hindawi, vol. 2015, pages 1-13, March.
    4. Khurana, Archana & Adlakha, Veena & Lev, Benjamin, 2018. "Multi-index constrained transportation problem with bounds on availabilities, requirements and commodities," Operations Research Perspectives, Elsevier, vol. 5(C), pages 319-333.
    5. Pradip Kundu, 2021. "A multi-objective reliability-redundancy allocation problem with active redundancy and interval type-2 fuzzy parameters," Operational Research, Springer, vol. 21(4), pages 2433-2458, December.
    6. Pradip Kundu & Saibal Majumder & Samarjit Kar & Manoranjan Maiti, 2019. "A method to solve linear programming problem with interval type-2 fuzzy parameters," Fuzzy Optimization and Decision Making, Springer, vol. 18(1), pages 103-130, March.
    7. Palash Sahoo, 2024. "Solution of a single-objective based three-stage 4DTP model with information crowdsourcing under disaster relief scenario: a hybrid random type-2 fuzzy approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(10), pages 4668-4713, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:45:y:2014:i:8:p:1668-1682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.