IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3534-d1218146.html
   My bibliography  Save this article

Redundancy Allocation of Components with Time-Dependent Failure Rates

Author

Listed:
  • Enrico Zio

    (Center of Research on Risk and Crises (CRC), MINES-Paris, PSL University, 75272 Paris, France
    Energy Department, Politecnico di Milano, 20133 Milan, Italy)

  • Hadi Gholinezhad

    (Department of Industrial Engineering, University of Gonabad, Gonabad 96919-57678, Iran)

Abstract

The Redundancy Allocation Problem (RAP) is well-known in the field of reliability optimization. In this paper, RAP is investigated assuming that the distribution of the time to failure of the components has the form of an Erlang distribution with a time-dependent rate parameter and considering that the choice of redundancy for each subsystem can be none, active, standby or mixed. A genetic algorithm is used to solve the problem of optimal allocation. To analyze the effect of the time dependence, some numerical examples are worked out. Then, a case study of RAP from the literature is analyzed. The obtained results show that time dependence of the failure time distribution parameters can lead to significant differences in the optimal redundancy allocation.

Suggested Citation

  • Enrico Zio & Hadi Gholinezhad, 2023. "Redundancy Allocation of Components with Time-Dependent Failure Rates," Mathematics, MDPI, vol. 11(16), pages 1-27, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3534-:d:1218146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2019. "A heuristic survival signature based approach for reliability-redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 511-517.
    2. Cao, Dingzhou & Murat, Alper & Chinnam, Ratna Babu, 2013. "Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 154-163.
    3. Kim, Heungseob, 2017. "Optimal reliability design of a system with k-out-of-n subsystems considering redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 572-582.
    4. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    5. Yeh, Cheng-Ta & Fiondella, Lance, 2017. "Optimal redundancy allocation to maximize multi-state computer network reliability subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 138-150.
    6. Sun, Mu-Xia & Li, Yan-Fu & Zio, Enrico, 2019. "On the optimal redundancy allocation for multi-state series–parallel systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    7. Yeh, Wei-Chang, 2019. "A novel boundary swarm optimization method for reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    8. Kim, Heungseob & Kim, Pansoo, 2017. "Reliability–redundancy allocation problem considering optimal redundancy strategy using parallel genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 153-160.
    9. Mellal, Mohamed Arezki & Zio, Enrico, 2020. "System reliability-redundancy optimization with cold-standby strategy by an enhanced nest cuckoo optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    10. Li, Yan-Fu & Zhang, Hanxiao, 2022. "The methods for exactly solving redundancy allocation optimization for multi-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    11. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    12. Valaei, M.R. & Behnamian, J., 2017. "Allocation and sequencing in 1-out-of-N heterogeneous cold-standby systems: Multi-objective harmony search with dynamic parameters tuning," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 78-86.
    13. Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.
    14. Kong, Xiangyong & Gao, Liqun & Ouyang, Haibin & Li, Steven, 2015. "Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 147-158.
    15. Caserta, Marco & Voß, Stefan, 2015. "An exact algorithm for the reliability redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 110-116.
    16. Yeh, Wei-Chang, 2022. "BAT-based algorithm for finding all Pareto solutions of the series-parallel redundancy allocation problem with mixed components," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Li, Xiang-Yu & Li, Yan-Feng & Huang, Hong-Zhong, 2020. "Redundancy allocation problem of phased-mission system with non-exponential components and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    18. Peiravi, Abdossaber & Ardakan, Mostafa Abouei & Zio, Enrico, 2020. "A new Markov-based model for reliability optimization problems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    19. Lai, Chyh-Ming & Yeh, Wei-Chang, 2016. "Two-stage simplified swarm optimization for the redundancy allocation problem in a multi-state bridge system," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 148-158.
    20. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    21. Hsieh, Tsung-Jung, 2021. "Component mixing with a cold standby strategy for the redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gholinezhad, Hadi, 2024. "A new model for reliability redundancy allocation problem with component mixing," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Gholinezhad, Hadi, 2024. "A new model for reliability redundancy allocation problem with component mixing," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Sharifi, Mani & Taghipour, Sharareh, 2024. "Redundancy allocation problem with a mix of components for a multi-state system and continuous performance level components," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Muhuri, Pranab K. & Nath, Rahul, 2019. "A novel evolutionary algorithmic solution approach for bilevel reliability-redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Du, Mengyu & Li, Yan-Fu, 2020. "An investigation of new local search strategies in memetic algorithm for redundancy allocation in multi-state series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Li, Yan-Fu & Zhang, Hanxiao, 2022. "The methods for exactly solving redundancy allocation optimization for multi-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Zhang, Zixuan & Yang, Lin & Xu, Youwei & Zhu, Ran & Cao, Yining, 2023. "A novel reliability redundancy allocation problem formulation for complex systems," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. Wang, Wei & Lin, Mingqiang & Fu, Yongnian & Luo, Xiaoping & Chen, Hanghang, 2020. "Multi-objective optimization of reliability-redundancy allocation problem for multi-type production systems considering redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Myung-Ki Baek & Heungseob Kim, 2024. "Lifetime Distribution for a Mixed Redundant System with Imperfect Switch and Components Having Phase–Type Time-to-Failure Distribution," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
    11. Xiang, Jianwen & Wang, Zixiang & Wu, Chuanli & Zhao, Dongdong & Tian, Jing, 2022. "Optimal redundancies of parallel–series systems in irrelevancy coverage model," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Ouyang, Zhiyuan & Liu, Yu & Ruan, Sheng-Jia & Jiang, Tao, 2019. "An improved particle swarm optimization algorithm for reliability-redundancy allocation problem with mixed redundancy strategy and heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 62-74.
    14. Kowal, Karol, 2022. "Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Redundancy strategies assessment and optimization of k-out-of-n systems based on Markov chains and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    16. Yeh, Wei-Chang, 2022. "BAT-based algorithm for finding all Pareto solutions of the series-parallel redundancy allocation problem with mixed components," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing partial component activation policy in multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Nath, Rahul & Muhuri, Pranab K., 2022. "Evolutionary Optimization based Solution approaches for Many Objective Reliability-Redundancy Allocation Problem," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    19. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal tasks assignment policy in multi-task multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Hsieh, Tsung-Jung, 2023. "A Q-learning guided search for developing a hybrid of mixed redundancy strategies to improve system reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3534-:d:1218146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.