IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v21y2021i3d10.1007_s12351-019-00529-6.html
   My bibliography  Save this article

Two metaheuristics approaches for solving the traveling salesman problem: an Algerian waste collection case

Author

Listed:
  • Khalid Mekamcha

    (University of Tlemcen)

  • Mehdi Souier

    (University of Tlemcen
    High School of Management of Tlemcen)

  • Hakim Nadhir Bessenouci

    (University of Tlemcen)

  • Mohammed Bennekrouf

    (University of Tlemcen
    High School of Applied Sciences of Tlemcen)

Abstract

Waste collection remains a very important research area in waste management to deal with environmental degradation and health risks caused by daily waste quantities of the population. However, due to financial resources limitations, there is an increasing trend towards developing waste collection systems able to meet the different requirements related to the performance of the global collection cost, the tour scheduling and the capacity of each truck, the collection times, the fuel consumption and the overall traveled distance. In this work, we investigate the waste collection problem in Tlemcen City in Algeria. The problem is represented as a traveling salesman problem. Owing to the complexity of this real-life problem, two classes of metaheuristics known as powerful approaches are used to provide useful solutions for the addressed case. A Tabu Search algorithm and a simulated annealing (SA) algorithm are integrated in a decision-making graphical interface developed to help decision makers to plan their tours. The proposed algorithms are validated using data retrieved from all areas in Tlemcen. The results show that the SA performs the best to minimize the traveled distance in the vast majority of cases.

Suggested Citation

  • Khalid Mekamcha & Mehdi Souier & Hakim Nadhir Bessenouci & Mohammed Bennekrouf, 2021. "Two metaheuristics approaches for solving the traveling salesman problem: an Algerian waste collection case," Operational Research, Springer, vol. 21(3), pages 1641-1661, September.
  • Handle: RePEc:spr:operea:v:21:y:2021:i:3:d:10.1007_s12351-019-00529-6
    DOI: 10.1007/s12351-019-00529-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-019-00529-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-019-00529-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahram Alidaee & Vijay P. Ramalingam & Haibo Wang & Bryan Kethley, 2018. "Computational experiment of critical event tabu search for the general integer multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 269(1), pages 3-19, October.
    2. Akash Tayal & Surya Prakash Singh, 2018. "Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem," Annals of Operations Research, Springer, vol. 270(1), pages 489-514, November.
    3. Huang, G. H. & Baetz, B. W. & Patry, G. G., 1995. "Grey fuzzy integer programming: An application to regional waste management planning under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 17-38, March.
    4. Bektas, Tolga, 2006. "The multiple traveling salesman problem: an overview of formulations and solution procedures," Omega, Elsevier, vol. 34(3), pages 209-219, June.
    5. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    6. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    7. Chiranjit Changdar & G.S. Mahapatra & Rajat Kumar Pal, 2016. "A modified genetic algorithm-based approach to solve constrained solid TSP with time window using interval valued parameter," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 26(4), pages 398-421.
    8. C. Archetti & M. G. Speranza & A. Hertz, 2006. "A Tabu Search Algorithm for the Split Delivery Vehicle Routing Problem," Transportation Science, INFORMS, vol. 40(1), pages 64-73, February.
    9. Christophe Duhamel & Jean-Yves Potvin & Jean-Marc Rousseau, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows," Transportation Science, INFORMS, vol. 31(1), pages 49-59, February.
    10. Mahsa Oroojeni Mohammad Javad & Behrooz Karimi, 2017. "A simulated annealing algorithm for solving multi-depot location routing problem with backhaul," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 25(4), pages 460-477.
    11. Gianpaolo Ghiani & Gilbert Laporte & Frédéric Semet, 2006. "The Black and White Traveling Salesman Problem," Operations Research, INFORMS, vol. 54(2), pages 366-378, April.
    12. Silva, Marcos Roberto & Cunha, Claudio B., 2017. "A tabu search heuristic for the uncapacitated single allocation p-hub maximal covering problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 954-965.
    13. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    14. Kinable, Joris & Smeulders, Bart & Delcour, Eline & Spieksma, Frits C.R., 2017. "Exact algorithms for the Equitable Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 475-485.
    15. Keisuke Murakami, 2018. "Formulation and algorithms for route planning problem of plug-in hybrid electric vehicles," Operational Research, Springer, vol. 18(2), pages 497-519, July.
    16. François V. Louveaux & Juan-José Salazar-González, 2018. "Exact Approach for the Vehicle Routing Problem with Stochastic Demands and Preventive Returns," Service Science, INFORMS, vol. 52(6), pages 1463-1478, December.
    17. Kara, Imdat & Bektas, Tolga, 2006. "Integer linear programming formulations of multiple salesman problems and its variations," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1449-1458, November.
    18. Gouveia, Luis & Leitner, Markus & Ruthmair, Mario, 2017. "Extended formulations and branch-and-cut algorithms for the Black-and-White Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 908-928.
    19. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    20. Doppstadt, C. & Koberstein, A. & Vigo, D., 2016. "The Hybrid Electric Vehicle – Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 825-842.
    21. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    22. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    23. Sachchida Nand Chaurasia & Shyam Sundar & Alok Singh, 2017. "Hybrid metaheuristic approaches for the single machine total stepwise tardiness problem with release dates," Operational Research, Springer, vol. 17(1), pages 275-295, April.
    24. Vahid Riahi & Morteza Kazemi, 2018. "A new hybrid ant colony algorithm for scheduling of no-wait flowshop," Operational Research, Springer, vol. 18(1), pages 55-74, April.
    25. Mourao, M. Candida & Almeida, M. Teresa, 2000. "Lower-bounding and heuristic methods for a refuse collection vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 121(2), pages 420-434, March.
    26. Leggieri, Valeria & Haouari, Mohamed, 2017. "Lifted polynomial size formulations for the homogeneous and heterogeneous vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 263(3), pages 755-767.
    27. Satyendra Kumar Sharma & Srikanta Routroy & Utkarsh Yadav, 2018. "Vehicle routing problem: recent literature review of its variants," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 33(1), pages 1-31.
    28. Saman Hong & Manfred W. Padberg, 1977. "Technical Note—A Note on the Symmetric Multiple Traveling Salesman Problem with Fixed Charges," Operations Research, INFORMS, vol. 25(5), pages 871-874, October.
    29. Sudha Khambhampati & Prasad Calyam & Xinhui Zhang, 2018. "A tabu search algorithm for a capacitated clustering problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 33(3), pages 387-412.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeroen Beliën & Liesje De Boeck & Jonas Van Ackere, 2014. "Municipal Solid Waste Collection and Management Problems: A Literature Review," Transportation Science, INFORMS, vol. 48(1), pages 78-102, February.
    2. Haluk Yapicioglu, 2018. "Multiperiod Multi Traveling Salesmen Problem Considering Time Window Constraints with an Application to a Real World Case," Networks and Spatial Economics, Springer, vol. 18(4), pages 773-801, December.
    3. He, Pengfei & Hao, Jin-Kao, 2023. "Memetic search for the minmax multiple traveling salesman problem with single and multiple depots," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1055-1070.
    4. José Alejandro Cornejo-Acosta & Jesús García-Díaz & Julio César Pérez-Sansalvador & Carlos Segura, 2023. "Compact Integer Programs for Depot-Free Multiple Traveling Salesperson Problems," Mathematics, MDPI, vol. 11(13), pages 1-25, July.
    5. Xu, Dongyang & Li, Kunpeng & Zou, Xuxia & Liu, Ling, 2017. "An unpaired pickup and delivery vehicle routing problem with multi-visit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 218-247.
    6. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    7. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    8. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    9. Taillard, Eric D. & Gambardella, Luca M. & Gendreau, Michel & Potvin, Jean-Yves, 2001. "Adaptive memory programming: A unified view of metaheuristics," European Journal of Operational Research, Elsevier, vol. 135(1), pages 1-16, November.
    10. Fröhlich von Elmbach, Alexander & Scholl, Armin & Walter, Rico, 2019. "Minimizing the maximal ergonomic burden in intra-hospital patient transportation," European Journal of Operational Research, Elsevier, vol. 276(3), pages 840-854.
    11. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    12. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2018. "An optimization approach for designing routes in metrological control services: a case study," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 924-952, December.
    13. Burger, M. & Su, Z. & De Schutter, B., 2018. "A node current-based 2-index formulation for the fixed-destination multi-depot travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 463-477.
    14. J-F Chen & T-H Wu, 2006. "Vehicle routing problem with simultaneous deliveries and pickups," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 579-587, May.
    15. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
    16. Tamás Kalmár-Nagy & Giovanni Giardini & Bendegúz Dezső Bak, 2017. "The Multiagent Planning Problem," Complexity, Hindawi, vol. 2017, pages 1-12, February.
    17. Belien, Jeroen & De Boeck, Liesje & Van Ackere, Jonas, 2011. "Municipal Solid Waste Collection Problems: A Literature Review," Working Papers 2011/34, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    18. Gmira, Maha & Gendreau, Michel & Lodi, Andrea & Potvin, Jean-Yves, 2021. "Tabu search for the time-dependent vehicle routing problem with time windows on a road network," European Journal of Operational Research, Elsevier, vol. 288(1), pages 129-140.
    19. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    20. Dusan Ku & Tiru S. Arthanari, 2016. "On double cycling for container port productivity improvement," Annals of Operations Research, Springer, vol. 243(1), pages 55-70, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:21:y:2021:i:3:d:10.1007_s12351-019-00529-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.