IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v261y2017i2p475-485.html
   My bibliography  Save this article

Exact algorithms for the Equitable Traveling Salesman Problem

Author

Listed:
  • Kinable, Joris
  • Smeulders, Bart
  • Delcour, Eline
  • Spieksma, Frits C.R.

Abstract

Given a weighted graph G=(V,E), the Equitable Traveling Salesman Problem (ETSP) asks for two perfect matchings in G such that (1) the two matchings together form a Hamiltonian cycle in G and (2) the absolute difference in costs between the two matchings is minimized. The problem is shown to be NP-Hard, even when the graph G is complete. We present two integer programming models to solve the ETSP problem and compare the strength of these formulations. One model is solved through branch-and-cut, whereas the other model is solved through a branch-and-price framework. A simple local search heuristic is also implemented. We conduct computational experiments on different types of instances, often derived from the TSPLib. It turns out that the behavior of the different approaches varies with the type of instances. For small and medium sized instances, branch-and-bound and branch-and-price produce comparable results. However, for larger instances branch-and-bound outperforms branch-and-price.

Suggested Citation

  • Kinable, Joris & Smeulders, Bart & Delcour, Eline & Spieksma, Frits C.R., 2017. "Exact algorithms for the Equitable Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 475-485.
  • Handle: RePEc:eee:ejores:v:261:y:2017:i:2:p:475-485
    DOI: 10.1016/j.ejor.2017.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171730139X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gouveia, Luis & Vo[ss], Stefan, 1995. "A classification of formulations for the (time-dependent) traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 83(1), pages 69-82, May.
    2. Bassetto, Tatiana & Mason, Francesco, 2011. "Heuristic algorithms for the 2-period balanced Travelling Salesman Problem in Euclidean graphs," European Journal of Operational Research, Elsevier, vol. 208(3), pages 253-262, February.
    3. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    4. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    5. K. Aardal & R. E. Bixby & C. A. J. Hurkens & A. K. Lenstra & J. W. Smeltink, 2000. "Market Split and Basis Reduction: Towards a Solution of the Cornuéjols-Dawande Instances," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 192-202, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalid Mekamcha & Mehdi Souier & Hakim Nadhir Bessenouci & Mohammed Bennekrouf, 2021. "Two metaheuristics approaches for solving the traveling salesman problem: an Algerian waste collection case," Operational Research, Springer, vol. 21(3), pages 1641-1661, September.
    2. Annette M. C. Ficker & Frits C. R. Spieksma & Gerhard J. Woeginger, 2018. "Robust balanced optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 239-266, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furini, Fabio & Persiani, Carlo Alfredo & Toth, Paolo, 2016. "The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 38-55.
    2. A. S. Santos & A. M. Madureira & M. L. R. Varela, 2018. "The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance," Journal of Mathematics, Hindawi, vol. 2018, pages 1-14, July.
    3. N. A. Arellano-Arriaga & J. Molina & S. E. Schaeffer & A. M. Álvarez-Socarrás & I. A. Martínez-Salazar, 2019. "A bi-objective study of the minimum latency problem," Journal of Heuristics, Springer, vol. 25(3), pages 431-454, June.
    4. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    5. Maria Michela Dickson & Yves Tillé, 2016. "Ordered spatial sampling by means of the traveling salesman problem," Computational Statistics, Springer, vol. 31(4), pages 1359-1372, December.
    6. Letchford, Adam N. & Nasiri, Saeideh D. & Theis, Dirk Oliver, 2013. "Compact formulations of the Steiner Traveling Salesman Problem and related problems," European Journal of Operational Research, Elsevier, vol. 228(1), pages 83-92.
    7. Mahdi Alinaghian & Komail Zamanlou & Mohammad S. Sabbagh, 2017. "A bi-objective mathematical model for two-dimensional loading time-dependent vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1422-1441, November.
    8. G Babin & S Deneault & G Laporte, 2007. "Improvements to the Or-opt heuristic for the symmetric travelling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 402-407, March.
    9. Gustavo Erick Anaya Fuentes & Eva Selene Hernández Gress & Juan Carlos Seck Tuoh Mora & Joselito Medina Marín, 2018. "Solution to travelling salesman problem by clusters and a modified multi-restart iterated local search metaheuristic," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-20, August.
    10. repec:jss:jstsof:23:i02 is not listed on IDEAS
    11. Cacchiani, Valentina & Contreras-Bolton, Carlos & Toth, Paolo, 2020. "Models and algorithms for the Traveling Salesman Problem with Time-dependent Service times," European Journal of Operational Research, Elsevier, vol. 283(3), pages 825-843.
    12. G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
    13. De la Fuente, Rodrigo & Aguayo, Maichel M. & Contreras-Bolton, Carlos, 2024. "An optimization-based approach for an integrated forest fire monitoring system with multiple technologies and surveillance drones," European Journal of Operational Research, Elsevier, vol. 313(2), pages 435-451.
    14. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    15. Silva, Marcos Melo & Subramanian, Anand & Vidal, Thibaut & Ochi, Luiz Satoru, 2012. "A simple and effective metaheuristic for the Minimum Latency Problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 513-520.
    16. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    17. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    18. Almoustafa, Samira & Hanafi, Said & Mladenović, Nenad, 2013. "New exact method for large asymmetric distance-constrained vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 226(3), pages 386-394.
    19. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    20. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    21. Santos, Lui­s & Coutinho-Rodrigues, João & Current, John R., 2008. "Implementing a multi-vehicle multi-route spatial decision support system for efficient trash collection in Portugal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 922-934, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:261:y:2017:i:2:p:475-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.