IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v174y2006i3p1449-1458.html
   My bibliography  Save this article

Integer linear programming formulations of multiple salesman problems and its variations

Author

Listed:
  • Kara, Imdat
  • Bektas, Tolga

Abstract

No abstract is available for this item.

Suggested Citation

  • Kara, Imdat & Bektas, Tolga, 2006. "Integer linear programming formulations of multiple salesman problems and its variations," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1449-1458, November.
  • Handle: RePEc:eee:ejores:v:174:y:2006:i:3:p:1449-1458
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00318-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang GuoXing, 1995. "Transformation of multidepot multisalesmen problem to the standard travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 81(3), pages 557-560, March.
    2. Kulkarni, R. V. & Bhave, P. R., 1985. "Integer programming formulations of vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 20(1), pages 58-67, April.
    3. Gilbert Laporte & Yves Nobert & Serge Taillefer, 1988. "Solving a Family of Multi-Depot Vehicle Routing and Location-Routing Problems," Transportation Science, INFORMS, vol. 22(3), pages 161-172, August.
    4. Bezalel Gavish, 1976. "Note--A Note on "The Formulation of the M-Salesman Traveling Salesman Problem"," Management Science, INFORMS, vol. 22(6), pages 704-705, February.
    5. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    6. Joseph A. Svestka & Vaughn E. Huckfeldt, 1973. "Computational Experience with an M-Salesman Traveling Salesman Algorithm," Management Science, INFORMS, vol. 19(7), pages 790-799, March.
    7. Bezalel Gavish & Kizhanathan Srikanth, 1986. "An Optimal Solution Method for Large-Scale Multiple Traveling Salesmen Problems," Operations Research, INFORMS, vol. 34(5), pages 698-717, October.
    8. Samuel Gorenstein, 1970. "Printing Press Scheduling for Multi-Edition Periodicals," Management Science, INFORMS, vol. 16(6), pages 373-383, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Przemysław Kowalik & Grzegorz Sobecki & Piotr Bawoł & Paweł Muzolf, 2023. "A Flow-Based Formulation of the Travelling Salesman Problem with Penalties on Nodes," Sustainability, MDPI, vol. 15(5), pages 1-28, February.
    2. Haluk Yapicioglu, 2018. "Multiperiod Multi Traveling Salesmen Problem Considering Time Window Constraints with an Application to a Real World Case," Networks and Spatial Economics, Springer, vol. 18(4), pages 773-801, December.
    3. Enrique Benavent & Antonio Martínez, 2013. "Multi-depot Multiple TSP: a polyhedral study and computational results," Annals of Operations Research, Springer, vol. 207(1), pages 7-25, August.
    4. Nourinejad, Mehdi & Roorda, Matthew J., 2014. "A dynamic carsharing decision support system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 36-50.
    5. Tuğçe Uzun Kocamiş & Gülçin Yildirim, 2016. "Sustainability Reporting in Turkey: Analysis of Companies in the BIST Sustainability Index," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 2, ejes_v2_i.
    6. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
    7. Albareda-Sambola, Maria & Fernández, Elena & Nickel, Stefan, 2012. "Multiperiod Location-Routing with Decoupled Time Scales," European Journal of Operational Research, Elsevier, vol. 217(2), pages 248-258.
    8. Burger, M. & Su, Z. & De Schutter, B., 2018. "A node current-based 2-index formulation for the fixed-destination multi-depot travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 463-477.
    9. Bektaş, Tolga, 2012. "Formulations and Benders decomposition algorithms for multidepot salesmen problems with load balancing," European Journal of Operational Research, Elsevier, vol. 216(1), pages 83-93.
    10. Tamás Kalmár-Nagy & Giovanni Giardini & Bendegúz Dezső Bak, 2017. "The Multiagent Planning Problem," Complexity, Hindawi, vol. 2017, pages 1-12, February.
    11. Tingxi Wen & Zhongnan Zhang & Kelvin K L Wong, 2016. "Multi-Objective Algorithm for Blood Supply via Unmanned Aerial Vehicles to the Wounded in an Emergency Situation," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-22, May.
    12. Bruck, Bruno P. & Cordeau, Jean-François & Iori, Manuel, 2018. "A practical time slot management and routing problem for attended home services," Omega, Elsevier, vol. 81(C), pages 208-219.
    13. Li, Kunpeng & Liu, Tengbo & Ram Kumar, P.N. & Han, Xuefang, 2024. "A reinforcement learning-based hyper-heuristic for AGV task assignment and route planning in parts-to-picker warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    14. Bräysy, Olli & Dullaert, Wout & Nakari, Pentti, 2009. "The potential of optimization in communal routing problems: case studies from Finland," Journal of Transport Geography, Elsevier, vol. 17(6), pages 484-490.
    15. László Kota & Károly Jármai, 2013. "Preliminary Studies On The Fixed Destination Mmtsp Solved By Discrete Firefly Algorithm," Advanced Logistic systems, University of Miskolc, Department of Material Handling and Logistics, vol. 7(2), pages 95-102, December.
    16. Park, Junhyuk & Kim, Byung-In, 2010. "The school bus routing problem: A review," European Journal of Operational Research, Elsevier, vol. 202(2), pages 311-319, April.
    17. José Alejandro Cornejo-Acosta & Jesús García-Díaz & Julio César Pérez-Sansalvador & Carlos Segura, 2023. "Compact Integer Programs for Depot-Free Multiple Traveling Salesperson Problems," Mathematics, MDPI, vol. 11(13), pages 1-25, July.
    18. Khalid Mekamcha & Mehdi Souier & Hakim Nadhir Bessenouci & Mohammed Bennekrouf, 2021. "Two metaheuristics approaches for solving the traveling salesman problem: an Algerian waste collection case," Operational Research, Springer, vol. 21(3), pages 1641-1661, September.
    19. Mahmoud Masoud & Mohammed Elhenawy & Shi Qiang Liu & Mohammed Almannaa & Sebastien Glaser & Wael Alhajyaseen, 2023. "A Simulated Annealing for Optimizing Assignment of E-Scooters to Freelance Chargers," Sustainability, MDPI, vol. 15(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bektas, Tolga, 2006. "The multiple traveling salesman problem: an overview of formulations and solution procedures," Omega, Elsevier, vol. 34(3), pages 209-219, June.
    2. Yuan, Shuai & Skinner, Bradley & Huang, Shoudong & Liu, Dikai, 2013. "A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 228(1), pages 72-82.
    3. José Alejandro Cornejo-Acosta & Jesús García-Díaz & Julio César Pérez-Sansalvador & Carlos Segura, 2023. "Compact Integer Programs for Depot-Free Multiple Traveling Salesperson Problems," Mathematics, MDPI, vol. 11(13), pages 1-25, July.
    4. Tamás Kalmár-Nagy & Giovanni Giardini & Bendegúz Dezső Bak, 2017. "The Multiagent Planning Problem," Complexity, Hindawi, vol. 2017, pages 1-12, February.
    5. Bektaş, Tolga, 2012. "Formulations and Benders decomposition algorithms for multidepot salesmen problems with load balancing," European Journal of Operational Research, Elsevier, vol. 216(1), pages 83-93.
    6. Chen, Lijian & Chiang, Wen-Chyuan & Russell, Robert & Chen, Jun & Sun, Dengfeng, 2018. "The probabilistic vehicle routing problem with service guarantees," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 149-164.
    7. Rathinam, Sivakumar & Sengupta, Raja, 2006. "Matroid Intersection and its application to a Multiple Depot, Multiple TSP," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9sj6585p, Institute of Transportation Studies, UC Berkeley.
    8. Sivakumar, Rathinam & Sengupta, Raja, 2007. "5/3-Approximation Algorithm for a Multiple Depot, Terminal Hamiltonian Path Problem," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3dw086dn, Institute of Transportation Studies, UC Berkeley.
    9. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    10. Allahyari, Somayeh & Salari, Majid & Vigo, Daniele, 2015. "A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 242(3), pages 756-768.
    11. Henan Liu & Huili Zhang & Yi Xu, 2021. "The m-Steiner Traveling Salesman Problem with online edge blockages," Journal of Combinatorial Optimization, Springer, vol. 41(4), pages 844-860, May.
    12. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.
    13. Su, Fuyong & Kong, Linglu & Wang, Hui & Wen, Zhi, 2021. "Modeling and application for rolling scheduling problem based on TSP," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    14. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    15. Alvarez, Jose A. Lopez & Buijs, Paul & Deluster, Rogier & Coelho, Leandro C. & Ursavas, Evrim, 2020. "Strategic and operational decision-making in expanding supply chains for LNG as a fuel," Omega, Elsevier, vol. 97(C).
    16. Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2018. "Alternative formulations and improved bounds for the multi-depot fleet size and mix vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 125-157, January.
    17. Wang, Shaojun & Sarker, Bhaba R. & Mann, Lawrence & Triantaphyllou, Evangelos, 2004. "Resource planning and a depot location model for electric power restoration," European Journal of Operational Research, Elsevier, vol. 155(1), pages 22-43, May.
    18. D de Ladurantaye & M Gendreau & J-Y Potvin, 2007. "Scheduling a hot rolling mill," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 288-300, March.
    19. Albareda-Sambola, Maria & Fernandez, Elena & Laporte, Gilbert, 2007. "Heuristic and lower bound for a stochastic location-routing problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 940-955, June.
    20. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:174:y:2006:i:3:p:1449-1458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.