IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v17y2017i1d10.1007_s12351-016-0225-1.html
   My bibliography  Save this article

Hybrid metaheuristic approaches for the single machine total stepwise tardiness problem with release dates

Author

Listed:
  • Sachchida Nand Chaurasia

    (University of Hyderabad)

  • Shyam Sundar

    (National Institute of Technology Raipur)

  • Alok Singh

    (University of Hyderabad)

Abstract

This paper presents two hybrid metaheuristic approaches, viz. a hybrid genetic algorithm and a hybrid artificial bee colony algorithm for a single machine scheduling problem where tardiness cost of a job increases stepwise with various due dates and the objective is to minimize the total tardiness cost. This kind of tardiness cost occurs in several real life scenarios particularly in transportation. Two versions of the scheduling problem are considered. In the first version, all jobs are assumed to be available for processing at the beginning, whereas in the latter version jobs have release dates. For both versions, we have employed a local search to further improve the solutions obtained through our metaheuristic approaches. To the best of our knowledge, our approaches are the first metaheuristic approaches for the latter version of the problem. For the first version, we have compared our approaches with the state-of-the-art approaches available in the literature. Computational results show the superiority of our approaches over previous approaches in terms of solution quality and running time both. For the latter version, hybrid artificial bee colony algorithm based approach outperformed the hybrid genetic algorithm based approach in terms of solution quality and running time both.

Suggested Citation

  • Sachchida Nand Chaurasia & Shyam Sundar & Alok Singh, 2017. "Hybrid metaheuristic approaches for the single machine total stepwise tardiness problem with release dates," Operational Research, Springer, vol. 17(1), pages 275-295, April.
  • Handle: RePEc:spr:operea:v:17:y:2017:i:1:d:10.1007_s12351-016-0225-1
    DOI: 10.1007/s12351-016-0225-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-016-0225-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-016-0225-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    2. J. Michael Moore, 1968. "An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs," Management Science, INFORMS, vol. 15(1), pages 102-109, September.
    3. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    4. M'Hallah, Rym & Bulfin, R. L., 2003. "Minimizing the weighted number of tardy jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 145(1), pages 45-56, February.
    5. Sevaux, Marc & Dauzere-Peres, Stephane, 2003. "Genetic algorithms to minimize the weighted number of late jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 151(2), pages 296-306, December.
    6. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
    7. Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byung-Cheon Choi & Myoung-Ju Park, 2021. "Single-machine scheduling with periodic due dates to minimize the total earliness and tardy penalty," Journal of Combinatorial Optimization, Springer, vol. 41(4), pages 781-793, May.
    2. Khalid Mekamcha & Mehdi Souier & Hakim Nadhir Bessenouci & Mohammed Bennekrouf, 2021. "Two metaheuristics approaches for solving the traveling salesman problem: an Algerian waste collection case," Operational Research, Springer, vol. 21(3), pages 1641-1661, September.
    3. Duc-Hoc Tran & Jui-Sheng Chou & Duc-Long Luong, 2022. "Optimizing non-unit repetitive project resource and scheduling by evolutionary algorithms," Operational Research, Springer, vol. 22(1), pages 77-103, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2013. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries for multiple customers in supply chains," European Journal of Operational Research, Elsevier, vol. 228(2), pages 345-357.
    2. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    3. Li, Gang & Jiang, Hongxun & He, Tian, 2015. "A genetic algorithm-based decomposition approach to solve an integrated equipment-workforce-service planning problem," Omega, Elsevier, vol. 50(C), pages 1-17.
    4. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    5. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    6. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
    7. Wahiba Jomaa & Mansour Eddaly & Bassem Jarboui, 2021. "Variable neighborhood search algorithms for the permutation flowshop scheduling problem with the preventive maintenance," Operational Research, Springer, vol. 21(4), pages 2525-2542, December.
    8. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    9. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
    10. Angel A. Juan & Helena Ramalhinho-Lourenço & Manuel Mateo & Quim Castellà & Barry B. Barrios, 2012. "ILS-ESP: An efficient, simple, and parameter-free algorithm for solving the permutation flow-shop problem," Economics Working Papers 1319, Department of Economics and Business, Universitat Pompeu Fabra.
    11. M'Hallah, Rym & Bulfin, R. L., 2005. "Minimizing the weighted number of tardy jobs on parallel processors," European Journal of Operational Research, Elsevier, vol. 160(2), pages 471-484, January.
    12. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    13. Hejl, Lukáš & Šůcha, Přemysl & Novák, Antonín & Hanzálek, Zdeněk, 2022. "Minimizing the weighted number of tardy jobs on a single machine: Strongly correlated instances," European Journal of Operational Research, Elsevier, vol. 298(2), pages 413-424.
    14. M'Hallah, Rym & Bulfin, R.L., 2007. "Minimizing the weighted number of tardy jobs on a single machine with release dates," European Journal of Operational Research, Elsevier, vol. 176(2), pages 727-744, January.
    15. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    16. Benavides, Alexander J. & Ritt, Marcus & Miralles, Cristóbal, 2014. "Flow shop scheduling with heterogeneous workers," European Journal of Operational Research, Elsevier, vol. 237(2), pages 713-720.
    17. Martín Ravetti & Carlos Riveros & Alexandre Mendes & Mauricio Resende & Panos Pardalos, 2012. "Parallel hybrid heuristics for the permutation flow shop problem," Annals of Operations Research, Springer, vol. 199(1), pages 269-284, October.
    18. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
    19. Danny Hermelin & Shlomo Karhi & Michael Pinedo & Dvir Shabtay, 2021. "New algorithms for minimizing the weighted number of tardy jobs on a single machine," Annals of Operations Research, Springer, vol. 298(1), pages 271-287, March.
    20. Vallada, Eva & Ruiz, Rubén, 2009. "Cooperative metaheuristics for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 193(2), pages 365-376, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:17:y:2017:i:1:d:10.1007_s12351-016-0225-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.