IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v57y2006i5d10.1057_palgrave.jors.2602028.html
   My bibliography  Save this article

Vehicle routing problem with simultaneous deliveries and pickups

Author

Listed:
  • J-F Chen

    (Feng Chia University)

  • T-H Wu

    (Da-Yeh University)

Abstract

The vehicle routing problem with backhauls involves the delivery and pickup of goods at different customer locations. In many practical situations, however, the same customer may require both a delivery of goods from the distribution centre and a pickup of recycled items simultaneously. In this paper, an insertion-based procedure to generate good initial solutions and a heuristic based on the record-to-record travel, tabu lists, and route improvement procedures are proposed to resolve the vehicle routing problems with simultaneous deliveries and pickups. Computational characteristics of the insertion-based procedure and the hybrid heuristic are evaluated through computational experiments. Computational results show that the insertion-based procedure obtained better solutions than those found in the literature. Computational experiments also show that the proposed hybrid heuristic is able to reduce the gap between initial solutions and optimal solutions effectively and is capable of obtaining optimal solutions very efficiently for small-sized problems.

Suggested Citation

  • J-F Chen & T-H Wu, 2006. "Vehicle routing problem with simultaneous deliveries and pickups," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 579-587, May.
  • Handle: RePEc:pal:jorsoc:v:57:y:2006:i:5:d:10.1057_palgrave.jors.2602028
    DOI: 10.1057/palgrave.jors.2602028
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602028
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    2. Paolo Toth & Daniele Vigo, 1997. "An Exact Algorithm for the Vehicle Routing Problem with Backhauls," Transportation Science, INFORMS, vol. 31(4), pages 372-385, November.
    3. Christophe Duhamel & Jean-Yves Potvin & Jean-Marc Rousseau, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows," Transportation Science, INFORMS, vol. 31(1), pages 49-59, February.
    4. S Salhi & G Nagy, 1999. "A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1034-1042, October.
    5. Candace Arai Yano & Thomas J. Chan & Lori Kaplan Richter & Theodore Cutler & Katta G. Murty & David McGettigan, 1987. "Vehicle Routing at Quality Stores," Interfaces, INFORMS, vol. 17(2), pages 52-63, April.
    6. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    7. Goetschalckx, Marc & Jacobs-Blecha, Charlotte, 1989. "The vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 42(1), pages 39-51, September.
    8. Aristide Mingozzi & Simone Giorgi & Roberto Baldacci, 1999. "An Exact Method for the Vehicle Routing Problem with Backhauls," Transportation Science, INFORMS, vol. 33(3), pages 315-329, August.
    9. Toth, Paolo & Vigo, Daniele, 1999. "A heuristic algorithm for the symmetric and asymmetric vehicle routing problems with backhauls," European Journal of Operational Research, Elsevier, vol. 113(3), pages 528-543, March.
    10. S. Anily & A. Federgruen, 1990. "A Class of Euclidean Routing Problems with General Route Cost Functions," Mathematics of Operations Research, INFORMS, vol. 15(2), pages 268-285, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Emadikhiav & David Bergman & Robert Day, 2020. "Consistent Routing and Scheduling with Simultaneous Pickups and Deliveries," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1937-1955, August.
    2. Niaz A. Wassan & A. Hameed Wassan & Gábor Nagy, 2008. "A reactive tabu search algorithm for the vehicle routing problem with simultaneous pickups and deliveries," Journal of Combinatorial Optimization, Springer, vol. 15(4), pages 368-386, May.
    3. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    4. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    5. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    6. Byungjun Ju & Minsu Kim & Ilkyeong Moon, 2021. "Vehicle Routing Problem Considering Reconnaissance and Transportation," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    7. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2010. "An adaptive memory methodology for the vehicle routing problem with simultaneous pick-ups and deliveries," European Journal of Operational Research, Elsevier, vol. 202(2), pages 401-411, April.
    8. Wang, Hsiao-Fan & Chen, Ying-Yen, 2013. "A coevolutionary algorithm for the flexible delivery and pickup problem with time windows," International Journal of Production Economics, Elsevier, vol. 141(1), pages 4-13.
    9. Yu, Mingzhu & Qi, Xiangtong, 2014. "A vehicle routing problem with multiple overlapped batches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 40-55.
    10. Kalayci, Can B. & Kulak, Osman & Günther, Hans-Otto, 2015. "A perturbation based variable neighborhood search heuristic for solving the Vehicle Routing Problem with Simultaneous Pickup and Delivery with Time LimitAuthor-Name: Polat, Olcay," European Journal of Operational Research, Elsevier, vol. 242(2), pages 369-382.
    11. S Mitra, 2008. "A parallel clustering technique for the vehicle routing problem with split deliveries and pickups," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1532-1546, November.
    12. Y Gajpal & P Abad, 2010. "Saving-based algorithms for vehicle routing problem with simultaneous pickup and delivery," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1498-1509, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    2. S Mitra, 2008. "A parallel clustering technique for the vehicle routing problem with split deliveries and pickups," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1532-1546, November.
    3. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    4. Gajpal, Yuvraj & Abad, P.L., 2009. "Multi-ant colony system (MACS) for a vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 196(1), pages 102-117, July.
    5. Ropke, Stefan & Pisinger, David, 2006. "A unified heuristic for a large class of Vehicle Routing Problems with Backhauls," European Journal of Operational Research, Elsevier, vol. 171(3), pages 750-775, June.
    6. Ganesh, K. & Narendran, T.T., 2007. "CLOVES: A cluster-and-search heuristic to solve the vehicle routing problem with delivery and pick-up," European Journal of Operational Research, Elsevier, vol. 178(3), pages 699-717, May.
    7. J Crispim & J Brandão, 2005. "Metaheuristics applied to mixed and simultaneous extensions of vehicle routing problems with backhauls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(11), pages 1296-1302, November.
    8. N Wassan, 2007. "Reactive tabu adaptive memory programming search for the vehicle routing problem with backhauls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1630-1641, December.
    9. Dominguez, Oscar & Guimarans, Daniel & Juan, Angel A. & de la Nuez, Ignacio, 2016. "A Biased-Randomised Large Neighbourhood Search for the two-dimensional Vehicle Routing Problem with Backhauls," European Journal of Operational Research, Elsevier, vol. 255(2), pages 442-462.
    10. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    11. Christos D. Tarantilis & Afroditi K. Anagnostopoulou & Panagiotis P. Repoussis, 2013. "Adaptive Path Relinking for Vehicle Routing and Scheduling Problems with Product Returns," Transportation Science, INFORMS, vol. 47(3), pages 356-379, August.
    12. Phuong Khanh Nguyen & Teodor Gabriel Crainic & Michel Toulouse, 2017. "Multi-trip pickup and delivery problem with time windows and synchronization," Annals of Operations Research, Springer, vol. 253(2), pages 899-934, June.
    13. Palhazi Cuervo, Daniel & Goos, Peter & Sörensen, Kenneth & Arráiz, Emely, 2014. "An iterated local search algorithm for the vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 237(2), pages 454-464.
    14. Brandao, Jose, 2006. "A new tabu search algorithm for the vehicle routing problem with backhauls," European Journal of Operational Research, Elsevier, vol. 173(2), pages 540-555, September.
    15. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    16. Yang, Senyan & Ning, Lianju & Shang, Pan & (Carol) Tong, Lu, 2020. "Augmented Lagrangian relaxation approach for logistics vehicle routing problem with mixed backhauls and time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    17. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    18. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    19. Wade, A. C. & Salhi, S., 2002. "An investigation into a new class of vehicle routing problem with backhauls," Omega, Elsevier, vol. 30(6), pages 479-487, December.
    20. Gmira, Maha & Gendreau, Michel & Lodi, Andrea & Potvin, Jean-Yves, 2021. "Tabu search for the time-dependent vehicle routing problem with time windows on a road network," European Journal of Operational Research, Elsevier, vol. 288(1), pages 129-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:57:y:2006:i:5:d:10.1057_palgrave.jors.2602028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.