IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v18y2018i1d10.1007_s12351-016-0253-x.html
   My bibliography  Save this article

A new hybrid ant colony algorithm for scheduling of no-wait flowshop

Author

Listed:
  • Vahid Riahi

    (Griffith University)

  • Morteza Kazemi

    (Shiraz University of Technology)

Abstract

In this paper, the no-wait flow shop scheduling problem under makespan and flowtime criteria is addressed. The no-wait flowshop is a variant of the well-known flowshop scheduling problem where all processes follow the previous one without any interruption for operations of a job. Owing to the problem is known to be NP-hard for more than two machines, a hybrid meta-heuristic algorithm based on ant colony optimization (ACO) and simulated annealing (SA) algorithm is improved. First, at each step, due to the characteristic of ACO algorithm that include solution construction and pheromone trail updating, some different areas of search space are checked and best solution is selected. Then, to enhance the quality and diversity of the solution and finding best neighbor of this solution, a novel SA is presented. Moreover, a new principle is applied for global pheromone update based on the probability function like SA algorithm. The proposed approach solution is compared with several the state-of-the-art algorithms in the literature. The reported results show that the proposed algorithms are effective and the new approach for local search in ACO algorithm is efficient for solving the no-wait flow shop problem. Then, we employed another hybrid ACO algorithm based on hybridization of ACO with variable neighborhood search (VNS) and compare the results given by two proposed algorithms. These results show that our new hybrid provides better results than ACO-VNS algorithm.

Suggested Citation

  • Vahid Riahi & Morteza Kazemi, 2018. "A new hybrid ant colony algorithm for scheduling of no-wait flowshop," Operational Research, Springer, vol. 18(1), pages 55-74, April.
  • Handle: RePEc:spr:operea:v:18:y:2018:i:1:d:10.1007_s12351-016-0253-x
    DOI: 10.1007/s12351-016-0253-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-016-0253-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-016-0253-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    2. Rajendran, Chandrasekharan, 1993. "Heuristic algorithm for scheduling in a flowshop to minimize total flowtime," International Journal of Production Economics, Elsevier, vol. 29(1), pages 65-73, February.
    3. Tseng, Lin-Yu & Lin, Ya-Tai, 2010. "A hybrid genetic algorithm for no-wait flowshop scheduling problem," International Journal of Production Economics, Elsevier, vol. 128(1), pages 144-152, November.
    4. Fink, Andreas & Vo[ss], Stefan, 2003. "Solving the continuous flow-shop scheduling problem by metaheuristics," European Journal of Operational Research, Elsevier, vol. 151(2), pages 400-414, December.
    5. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    6. Gangadharan, Rajesh & Rajendran, Chandrasekharan, 1993. "Heuristic algorithms for scheduling in the no-wait flowshop," International Journal of Production Economics, Elsevier, vol. 32(3), pages 285-290, November.
    7. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    8. Shih-Wei Lin & Kuo-Ching Ying, 2012. "Scheduling a bi-criteria flowshop manufacturing cell with sequence-dependent family setup times," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 6(4), pages 474-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasilios A. Tsalavoutis & Constantinos G. Vrionis & Athanasios I. Tolis, 2021. "Optimizing a unit commitment problem using an evolutionary algorithm and a plurality of priority lists," Operational Research, Springer, vol. 21(1), pages 1-54, March.
    2. Khalid Mekamcha & Mehdi Souier & Hakim Nadhir Bessenouci & Mohammed Bennekrouf, 2021. "Two metaheuristics approaches for solving the traveling salesman problem: an Algerian waste collection case," Operational Research, Springer, vol. 21(3), pages 1641-1661, September.
    3. Georgios Semertzidis & Dimitrios Stamatakis & Vasilios Tsalavoutis & Athanasios I. Tolis, 2022. "Optimized electric vehicle charging integrated in the unit commitment problem," Operational Research, Springer, vol. 22(5), pages 5137-5204, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.
    2. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
    3. Agarwal, Anurag & Colak, Selcuk & Eryarsoy, Enes, 2006. "Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach," European Journal of Operational Research, Elsevier, vol. 169(3), pages 801-815, March.
    4. Varadharajan, T.K. & Rajendran, Chandrasekharan, 2005. "A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 167(3), pages 772-795, December.
    5. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    6. Rajendran, Chandrasekharan & Ziegler, Hans, 2004. "Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 155(2), pages 426-438, June.
    7. Framinan, Jose M. & Leisten, Rainer & Ruiz-Usano, Rafael, 2002. "Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation," European Journal of Operational Research, Elsevier, vol. 141(3), pages 559-569, September.
    8. K Sheibani, 2010. "A fuzzy greedy heuristic for permutation flow-shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 813-818, May.
    9. Liu, Jiyin & Reeves, Colin R, 2001. "Constructive and composite heuristic solutions to the P//[summation operator]Ci scheduling problem," European Journal of Operational Research, Elsevier, vol. 132(2), pages 439-452, July.
    10. Tirupati Devanath & Peeyush Mehta & Chandra, Pankaj, 2004. "Permutation Flowshop Scheduling with Earliness and Tardiness Penalties," IIMA Working Papers WP2004-07-06, Indian Institute of Management Ahmedabad, Research and Publication Department.
    11. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
    12. Li, Xiaoping & Wang, Qian & Wu, Cheng, 2009. "Efficient composite heuristics for total flowtime minimization in permutation flow shops," Omega, Elsevier, vol. 37(1), pages 155-164, February.
    13. O Holthaus & C Rajendran, 2005. "A fast ant-colony algorithm for single-machine scheduling to minimize the sum of weighted tardiness of jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 947-953, August.
    14. Smutnicki, Czeslaw, 1998. "Some results of the worst-case analysis for flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 109(1), pages 66-87, August.
    15. Liu, Shi Qiang & Kozan, Erhan, 2009. "Scheduling a flow shop with combined buffer conditions," International Journal of Production Economics, Elsevier, vol. 117(2), pages 371-380, February.
    16. Gajpal, Yuvraj & Rajendran, Chandrasekharan, 2006. "An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops," International Journal of Production Economics, Elsevier, vol. 101(2), pages 259-272, June.
    17. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
    18. Wang, Chuyang & Li, Xiaoping & Wang, Qian, 2010. "Accelerated tabu search for no-wait flowshop scheduling problem with maximum lateness criterion," European Journal of Operational Research, Elsevier, vol. 206(1), pages 64-72, October.
    19. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    20. Rajendran, Chandrasekharan & Ziegler, Hans, 2001. "A performance analysis of dispatching rules and a heuristic in static flowshops with missing operations of jobs," European Journal of Operational Research, Elsevier, vol. 131(3), pages 622-634, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:18:y:2018:i:1:d:10.1007_s12351-016-0253-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.