DGSA: discrete gravitational search algorithm for solving knapsack problem
Author
Abstract
Suggested Citation
DOI: 10.1007/s12351-016-0240-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shams, Masumeh & Rashedi, Esmat & Hakimi, Ahmad, 2015. "Clustered-gravitational search algorithm and its application in parameter optimization of a low noise amplifier," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 436-453.
- Mavrotas, George & Diakoulaki, Danae & Kourentzis, Athanasios, 2008. "Selection among ranked projects under segmentation, policy and logical constraints," European Journal of Operational Research, Elsevier, vol. 187(1), pages 177-192, May.
- Lin, Feng-Tse, 2008. "Solving the knapsack problem with imprecise weight coefficients using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 185(1), pages 133-145, February.
- Wan-li Xiang & Mei-qing An & Yin-zhen Li & Rui-chun He & Jing-fang Zhang, 2014. "A Novel Discrete Global-Best Harmony Search Algorithm for Solving 0-1 Knapsack Problems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-12, April.
- Florios, Kostas & Mavrotas, George & Diakoulaki, Danae, 2010. "Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 203(1), pages 14-21, May.
- Mavrotas, George & Florios, Kostas & Figueira, José Rui, 2015. "An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 25-43.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Madjid Tavana & Kaveh Khalili-Damghani & Amir-Reza Abtahi, 2013. "A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm," Annals of Operations Research, Springer, vol. 206(1), pages 449-483, July.
- Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
- Panos Xidonas & Haris Doukas & George Mavrotas & Olena Pechak, 2016. "Environmental corporate responsibility for investments evaluation: an alternative multi-objective programming model," Annals of Operations Research, Springer, vol. 247(2), pages 395-413, December.
- Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
- Caetani, Alberto Pavlick & Ferreira, Luciano & Borenstein, Denis, 2016. "Development of an integrated decision-making method for an oil refinery restructuring in Brazil," Energy, Elsevier, vol. 111(C), pages 197-210.
- Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
- F. Perez & T. Gomez, 2016. "Multiobjective project portfolio selection with fuzzy constraints," Annals of Operations Research, Springer, vol. 245(1), pages 7-29, October.
- García-Martínez, C. & Rodriguez, F.J. & Lozano, M., 2014. "Tabu-enhanced iterated greedy algorithm: A case study in the quadratic multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 454-463.
- Yanhong Feng & Xu Yu & Gai-Ge Wang, 2019. "A Novel Monarch Butterfly Optimization with Global Position Updating Operator for Large-Scale 0-1 Knapsack Problems," Mathematics, MDPI, vol. 7(11), pages 1-31, November.
- Mauricio Diéguez & Jaime Bustos & Carlos Cares, 2020. "Mapping the variations for implementing information security controls to their operational research solutions," Information Systems and e-Business Management, Springer, vol. 18(2), pages 157-186, June.
- F. R. B. Cruz & A. R. Duarte & G. L. Souza, 2018. "Multi-objective performance improvements of general finite single-server queueing networks," Journal of Heuristics, Springer, vol. 24(5), pages 757-781, October.
- Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
- Harris, Irina & Mumford, Christine L. & Naim, Mohamed M., 2014. "A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 1-22.
- Amirhossein Tahmouresi & Esmat Rashedi & Mohammad Mehdi Yaghoobi & Masoud Rezaei, 2022. "Gene selection using pyramid gravitational search algorithm," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-15, March.
- Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.
- Casado, Ramon Swell Gomes Rodrigues & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2022. "Combining a multidimensional risk evaluation with an implicit enumeration algorithm to tackle the portfolio selection problem of a natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Pérez, Fátima & Gómez, Trinidad & Caballero, Rafael & Liern, Vicente, 2018. "Project portfolio selection and planning with fuzzy constraints," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 117-129.
- George Mavrotas & Evangelos Makryvelios, 2023. "R&D project portfolio selection using the Iterative Trichotomic Approach in order to study how subjectivity of the weights is reflected in the selected projects of the final portfolio," Operational Research, Springer, vol. 23(3), pages 1-18, September.
- Brester Christina & Ryzhikov Ivan & Semenkin Eugene, 2017. "Multi-objective Optimization Algorithms with the Island Metaheuristic for Effective Project Management Problem Solving," Organizacija, Sciendo, vol. 50(4), pages 364-373, December.
- Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
More about this item
Keywords
Knapsack problem; Gravitational search algorithm; Discrete optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:17:y:2017:i:2:d:10.1007_s12351-016-0240-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.