IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0265351.html
   My bibliography  Save this article

Gene selection using pyramid gravitational search algorithm

Author

Listed:
  • Amirhossein Tahmouresi
  • Esmat Rashedi
  • Mohammad Mehdi Yaghoobi
  • Masoud Rezaei

Abstract

Genetics play a prominent role in the development and progression of malignant neoplasms. Identification of the relevant genes is a high-dimensional data processing problem. Pyramid gravitational search algorithm (PGSA), a hybrid method in which the number of genes is cyclically reduced is proposed to conquer the curse of dimensionality. PGSA consists of two elements, a filter and a wrapper method (inspired by the gravitational search algorithm) which iterates through cycles. The genes selected in each cycle are passed on to the subsequent cycles to further reduce the dimension. PGSA tries to maximize the classification accuracy using the most informative genes while reducing the number of genes. Results are reported on a multi-class microarray gene expression dataset for breast cancer. Several feature selection algorithms have been implemented to have a fair comparison. The PGSA ranked first in terms of accuracy (84.5%) with 73 genes. To check if the selected genes are meaningful in terms of patient’s survival and response to therapy, protein-protein interaction network analysis has been applied on the genes. An interesting pattern was emerged when examining the genetic network. HSP90AA1, PTK2 and SRC genes were amongst the top-rated bottleneck genes, and DNA damage, cell adhesion and migration pathways are highly enriched in the network.

Suggested Citation

  • Amirhossein Tahmouresi & Esmat Rashedi & Mohammad Mehdi Yaghoobi & Masoud Rezaei, 2022. "Gene selection using pyramid gravitational search algorithm," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0265351
    DOI: 10.1371/journal.pone.0265351
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265351
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0265351&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0265351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shams, Masumeh & Rashedi, Esmat & Hakimi, Ahmad, 2015. "Clustered-gravitational search algorithm and its application in parameter optimization of a low noise amplifier," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 436-453.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Ting & Sun, Yang & Zhang, Jiye & Yan, Gaocheng & Mu, Huaiping & Liu, Shi, 2016. "Optimal energy use of the collector tube in solar power tower plant," Renewable Energy, Elsevier, vol. 93(C), pages 525-535.
    2. Hedieh Sajedi & Seyedeh Fatemeh Razavi, 2017. "DGSA: discrete gravitational search algorithm for solving knapsack problem," Operational Research, Springer, vol. 17(2), pages 563-591, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0265351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.