IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v185y2008i1p133-145.html
   My bibliography  Save this article

Solving the knapsack problem with imprecise weight coefficients using genetic algorithms

Author

Listed:
  • Lin, Feng-Tse

Abstract

No abstract is available for this item.

Suggested Citation

  • Lin, Feng-Tse, 2008. "Solving the knapsack problem with imprecise weight coefficients using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 185(1), pages 133-145, February.
  • Handle: RePEc:eee:ejores:v:185:y:2008:i:1:p:133-145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00071-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sakawa, Masatoshi & Kato, Kosuke & Sunada, Hideaki & Shibano, Toshihiro, 1997. "Fuzzy programming for multiobjective 0-1 programming problems through revised genetic algorithms," European Journal of Operational Research, Elsevier, vol. 97(1), pages 149-158, February.
    2. Pisinger, David, 1995. "An expanding-core algorithm for the exact 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 175-187, November.
    3. Magazine, M. J. & Oguz, Osman, 1984. "A heuristic algorithm for the multidimensional zero-one knapsack problem," European Journal of Operational Research, Elsevier, vol. 16(3), pages 319-326, June.
    4. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    5. Lin, Feng-Tse & Yao, Jing-Shing, 2001. "Using fuzzy numbers in knapsack problems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 158-176, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madjid Tavana & Kaveh Khalili-Damghani & Amir-Reza Abtahi, 2013. "A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm," Annals of Operations Research, Springer, vol. 206(1), pages 449-483, July.
    2. F. R. B. Cruz & A. R. Duarte & G. L. Souza, 2018. "Multi-objective performance improvements of general finite single-server queueing networks," Journal of Heuristics, Springer, vol. 24(5), pages 757-781, October.
    3. Adil Baykasoğlu & Fehmi Burcin Ozsoydan & M. Emre Senol, 2020. "Weighted superposition attraction algorithm for binary optimization problems," Operational Research, Springer, vol. 20(4), pages 2555-2581, December.
    4. Hedieh Sajedi & Seyedeh Fatemeh Razavi, 2017. "DGSA: discrete gravitational search algorithm for solving knapsack problem," Operational Research, Springer, vol. 17(2), pages 563-591, July.
    5. Schäfer, Luca E. & Dietz, Tobias & Barbati, Maria & Figueira, José Rui & Greco, Salvatore & Ruzika, Stefan, 2021. "The binary knapsack problem with qualitative levels," European Journal of Operational Research, Elsevier, vol. 289(2), pages 508-514.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
    2. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    3. Mavrotas, George & Florios, Kostas & Figueira, José Rui, 2015. "An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 25-43.
    4. Eskigun, Erdem & Uzsoy, Reha & Preckel, Paul V. & Beaujon, George & Krishnan, Subramanian & Tew, Jeffrey D., 2005. "Outbound supply chain network design with mode selection, lead times and capacitated vehicle distribution centers," European Journal of Operational Research, Elsevier, vol. 165(1), pages 182-206, August.
    5. Lin, Feng-Tse & Yao, Jing-Shing, 2001. "Using fuzzy numbers in knapsack problems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 158-176, November.
    6. Paola Cappanera & Marco Trubian, 2005. "A Local-Search-Based Heuristic for the Demand-Constrained Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 82-98, February.
    7. Toth, Paolo, 2000. "Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 125(2), pages 222-238, September.
    8. Arnaud Fréville & SaÏd Hanafi, 2005. "The Multidimensional 0-1 Knapsack Problem—Bounds and Computational Aspects," Annals of Operations Research, Springer, vol. 139(1), pages 195-227, October.
    9. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    10. Mirrazavi, S. Keyvan & Jones, Dylan F. & Tamiz, M., 2001. "A comparison of genetic and conventional methods for the solution of integer goal programmes," European Journal of Operational Research, Elsevier, vol. 132(3), pages 594-602, August.
    11. Genserik L. L. Reniers & Kenneth Sörensen, 2013. "An Approach for Optimal Allocation of Safety Resources: Using the Knapsack Problem to Take Aggregated Cost‐Efficient Preventive Measures," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 2056-2067, November.
    12. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    13. Büther, Marcel & Briskorn, Dirk, 2007. "Reducing the 0-1 knapsack problem with a single continuous variable to the standard 0-1 knapsack problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 629, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Yanhong Feng & Xu Yu & Gai-Ge Wang, 2019. "A Novel Monarch Butterfly Optimization with Global Position Updating Operator for Large-Scale 0-1 Knapsack Problems," Mathematics, MDPI, vol. 7(11), pages 1-31, November.
    15. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    16. Sakawa, Masatoshi & Kato, Kosuke, 2003. "Genetic algorithms with double strings for 0-1 programming problems," European Journal of Operational Research, Elsevier, vol. 144(3), pages 581-597, February.
    17. Ghosh, Diptesh & Bandyopadhyay, Tathagata, 2006. "Spotting Difficult Weakly Correlated Binary Knapsack Problems," IIMA Working Papers WP2006-01-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    18. Sakawa, Masatoshi & Kato, Kosuke & Ushiro, Satoshi, 2002. "Operational planning of district heating and cooling plants through genetic algorithms for mixed 0-1 linear programming," European Journal of Operational Research, Elsevier, vol. 137(3), pages 677-687, March.
    19. Ben O’Neill, 2022. "Smallest covering regions and highest density regions for discrete distributions," Computational Statistics, Springer, vol. 37(3), pages 1229-1254, July.
    20. R. Pablo Arribillaga & G. Bergantiños, 2022. "Cooperative and axiomatic approaches to the knapsack allocation problem," Annals of Operations Research, Springer, vol. 318(2), pages 805-830, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:185:y:2008:i:1:p:133-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.