IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v23y2023i3d10.1007_s12351-023-00785-7.html
   My bibliography  Save this article

R&D project portfolio selection using the Iterative Trichotomic Approach in order to study how subjectivity of the weights is reflected in the selected projects of the final portfolio

Author

Listed:
  • George Mavrotas

    (National Technical University of Athens)

  • Evangelos Makryvelios

    (National Technical University of Athens)

Abstract

Project portfolio selection is a common problem in modern organizations. The allocation of resources to projects taking into account (a) the multi-criteria evaluation of projects and (b) the policy requirements for the final portfolio, is often addressed with a combination of multi-criteria analysis for the evaluation part and integer programming for the optimization part. However, the final portfolio is sensitive to changes in the importance of criteria, due to the multi-criteria evaluation of the projects which is the driver of the optimization. In the proposed approach, we take into account the inherent subjectivity expressed in the weights of criteria using a variation of the Iterative Trichotomic Approach method (Mavrotas and Pechak in Int J Mult Criteria Decis Mak 3:79–97, 2013). Specifically, we use an iterative process that starts considering portfolios that emerge from optimizing separately each criterion and gradually converging to the original set of criteria weights. The additional information provided to the decision maker by the proposed method, is that she/he can realize if the selection or exclusion of a specific project in the final portfolio is objective or it depends on the subjective weights and to what extent, while the conventional MCDA-IP approach does not differentiate the selected projects according to the imposed degree of subjectivity. The method is illustrated with a real data application from a project portfolio selection problem in Greece with 540 R&D projects that have to follow sectoral and geographical constraints.

Suggested Citation

  • George Mavrotas & Evangelos Makryvelios, 2023. "R&D project portfolio selection using the Iterative Trichotomic Approach in order to study how subjectivity of the weights is reflected in the selected projects of the final portfolio," Operational Research, Springer, vol. 23(3), pages 1-18, September.
  • Handle: RePEc:spr:operea:v:23:y:2023:i:3:d:10.1007_s12351-023-00785-7
    DOI: 10.1007/s12351-023-00785-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-023-00785-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-023-00785-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oral, Muhittin & Kettani, Ossama & Cinar, Unver, 2001. "Project evaluation and selection in a network of collaboration: A consensual disaggregation multi-criterion approach," European Journal of Operational Research, Elsevier, vol. 130(2), pages 332-346, April.
    2. George Mavrotas & Olena Pechak, 2013. "The trichotomic approach for dealing with uncertainty in project portfolio selection: combining MCDA, mathematical programming and Monte Carlo simulation," International Journal of Multicriteria Decision Making, Inderscience Enterprises Ltd, vol. 3(1), pages 79-96.
    3. Mavrotas, G. & Diakoulaki, D. & Caloghirou, Y., 2006. "Project prioritization under policy restrictions. A combination of MCDA with 0-1 programming," European Journal of Operational Research, Elsevier, vol. 171(1), pages 296-308, May.
    4. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    5. Zanakis, Stelios H. & Mandakovic, Tomislav & Gupta, Sushil K. & Sahay, Sundeep & Hong, Sungwan, 1995. "A review of program evaluation and fund allocation methods within the service and government sectors," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 59-79, March.
    6. Al-Husain, Raed & Khorramshahgol, Reza, 2020. "Incorporating analytical hierarchy process and goal programming to design responsive and efficient supply chains," Operations Research Perspectives, Elsevier, vol. 7(C).
    7. Abu-Taleb, Maher F. & Mareschal, Bertrand, 1995. "Water resources planning in the Middle East: Application of the PROMETHEE V multicriteria method," European Journal of Operational Research, Elsevier, vol. 81(3), pages 500-511, March.
    8. Mavrotas, George & Diakoulaki, Danae & Kourentzis, Athanasios, 2008. "Selection among ranked projects under segmentation, policy and logical constraints," European Journal of Operational Research, Elsevier, vol. 187(1), pages 177-192, May.
    9. G. Mavrotas & D. Diakoulaki & P. Capros, 2003. "Combined MCDA–IP Approach for Project Selection in the Electricity Market," Annals of Operations Research, Springer, vol. 120(1), pages 159-170, April.
    10. Kamal Golabi & Craig W. Kirkwood & Alan Sicherman, 1981. "Selecting a Portfolio of Solar Energy Projects Using Multiattribute Preference Theory," Management Science, INFORMS, vol. 27(2), pages 174-189, February.
    11. Liesio, Juuso & Mild, Pekka & Salo, Ahti, 2007. "Preference programming for robust portfolio modeling and project selection," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1488-1505, September.
    12. Mavrotas, George & Makryvelios, Evangelos, 2021. "Combining multiple criteria analysis, mathematical programming and Monte Carlo simulation to tackle uncertainty in Research and Development project portfolio selection: A case study from Greece," European Journal of Operational Research, Elsevier, vol. 291(2), pages 794-806.
    13. Cook, Wade D. & Green, Rodney H., 2000. "Project prioritization: a resource-constrained data envelopment analysis approach," Socio-Economic Planning Sciences, Elsevier, vol. 34(2), pages 85-99, June.
    14. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mavrotas, George & Makryvelios, Evangelos, 2021. "Combining multiple criteria analysis, mathematical programming and Monte Carlo simulation to tackle uncertainty in Research and Development project portfolio selection: A case study from Greece," European Journal of Operational Research, Elsevier, vol. 291(2), pages 794-806.
    2. Mavrotas, George & Diakoulaki, Danae & Kourentzis, Athanasios, 2008. "Selection among ranked projects under segmentation, policy and logical constraints," European Journal of Operational Research, Elsevier, vol. 187(1), pages 177-192, May.
    3. Panos Xidonas & Haris Doukas & George Mavrotas & Olena Pechak, 2016. "Environmental corporate responsibility for investments evaluation: an alternative multi-objective programming model," Annals of Operations Research, Springer, vol. 247(2), pages 395-413, December.
    4. Mavrotas, G. & Diakoulaki, D. & Caloghirou, Y., 2006. "Project prioritization under policy restrictions. A combination of MCDA with 0-1 programming," European Journal of Operational Research, Elsevier, vol. 171(1), pages 296-308, May.
    5. Casado, Ramon Swell Gomes Rodrigues & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2022. "Combining a multidimensional risk evaluation with an implicit enumeration algorithm to tackle the portfolio selection problem of a natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Zhang, Xinwei & Yan, Yong & Wang, Lilin & Wang, Yang, 2024. "A ranking approach for robust portfolio decision analysis based on multilinear portfolio utility functions and incomplete preference information," Omega, Elsevier, vol. 122(C).
    7. Selin Özpeynirci & Özgür Özpeynirci & Vincent Mousseau, 2021. "An interactive algorithm for resource allocation with balance concerns," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 983-1005, December.
    8. Vilkkumaa, Eeva & Liesiö, Juuso & Salo, Ahti & Ilmola-Sheppard, Leena, 2018. "Scenario-based portfolio model for building robust and proactive strategies," European Journal of Operational Research, Elsevier, vol. 266(1), pages 205-220.
    9. Vilkkumaa, Eeva & Liesiö, Juuso & Salo, Ahti, 2014. "Optimal strategies for selecting project portfolios using uncertain value estimates," European Journal of Operational Research, Elsevier, vol. 233(3), pages 772-783.
    10. Caetani, Alberto Pavlick & Ferreira, Luciano & Borenstein, Denis, 2016. "Development of an integrated decision-making method for an oil refinery restructuring in Brazil," Energy, Elsevier, vol. 111(C), pages 197-210.
    11. Fernández, Eduardo & Figueira, José Rui & Navarro, Jorge & Solares, Efrain, 2022. "Handling imperfect information in multiple criteria decision-making through a comprehensive interval outranking approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    12. F. Perez & T. Gomez, 2016. "Multiobjective project portfolio selection with fuzzy constraints," Annals of Operations Research, Springer, vol. 245(1), pages 7-29, October.
    13. Marttunen, Mika & Haara, Arto & Hjerppe, Turo & Kurttila, Mikko & Liesiö, Juuso & Mustajoki, Jyri & Saarikoski, Heli & Tolvanen, Anne, 2023. "Parallel and comparative use of three multicriteria decision support methods in an environmental portfolio problem," European Journal of Operational Research, Elsevier, vol. 307(2), pages 842-859.
    14. Liesiö, Juuso & Kee, Taeyoung & Malo, Pekka, 2024. "Modeling project interactions in multiattribute portfolio decision analysis: Axiomatic foundations and practical implications," European Journal of Operational Research, Elsevier, vol. 316(3), pages 988-1000.
    15. Toppila, Antti & Salo, Ahti, 2017. "Binary decision diagrams for generating and storing non-dominated project portfolios with interval-valued project scores," European Journal of Operational Research, Elsevier, vol. 260(1), pages 244-254.
    16. Pérez, Fátima & Gómez, Trinidad & Caballero, Rafael & Liern, Vicente, 2018. "Project portfolio selection and planning with fuzzy constraints," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 117-129.
    17. Hongbo Li & Rui Chen & Xianchao Zhang, 2022. "Uncertain Public R&D Project Portfolio Selection Considering Sectoral Balancing and Project Failure," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    18. Liesiö, Juuso & Salo, Ahti, 2012. "Scenario-based portfolio selection of investment projects with incomplete probability and utility information," European Journal of Operational Research, Elsevier, vol. 217(1), pages 162-172.
    19. Montibeller, Gilberto & Franco, L. Alberto & Lord, Ewan & Iglesias, Aline, 2009. "Structuring resource allocation decisions: A framework for building multi-criteria portfolio models with area-grouped options," European Journal of Operational Research, Elsevier, vol. 199(3), pages 846-856, December.
    20. Liesiö, Juuso & Mild, Pekka & Salo, Ahti, 2008. "Robust portfolio modeling with incomplete cost information and project interdependencies," European Journal of Operational Research, Elsevier, vol. 190(3), pages 679-695, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:23:y:2023:i:3:d:10.1007_s12351-023-00785-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.