IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v92y2018i2d10.1007_s11069-018-3231-1.html
   My bibliography  Save this article

Coupling sentiment and human mobility in natural disasters: a Twitter-based study of the 2014 South Napa Earthquake

Author

Listed:
  • Yan Wang

    (Virginia Tech)

  • John E. Taylor

    (Georgia Institute of Technology)

Abstract

Understanding population dynamics during natural disasters is important to build urban resilience in preparation for extreme events. Social media has emerged as an important source for disaster managers to identify dynamic polarity of sentiments over the course of disasters, to understand human mobility patterns, and to enhance decision making and disaster recovery efforts. Although there is a growing body of literature on sentiment and human mobility in disaster contexts, the spatiotemporal characteristics of sentiment and the relationship between sentiment and mobility over time have not been investigated in detail. This study therefore addresses this research gap and proposes a new lens to evaluate population dynamics during disasters by coupling sentiment and mobility. We collected 3.74 million geotagged tweets over 8 weeks to examine individuals’ sentiment and mobility before, during and after the M6.0 South Napa, California Earthquake in 2014. Our research results reveal that the average sentiment level decreases with the increasing intensity of the earthquake. We found that similar levels of sentiment tended to cluster in geographical space, and this spatial autocorrelation was significant over areas of different earthquake intensities. Moreover, we investigated the relationship between temporal dynamics of sentiment and mobility. We examined the trend and seasonality of the time series and found cointegration between the series. We included effects of the earthquake and built a segmented regression model to describe the time series finding that day-to-day changes in sentiment can either lead or lag daily changed mobility patterns. This study contributes a new lens to assess the dynamic process of disaster resilience unfolding over large spatial scales.

Suggested Citation

  • Yan Wang & John E. Taylor, 2018. "Coupling sentiment and human mobility in natural disasters: a Twitter-based study of the 2014 South Napa Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 907-925, June.
  • Handle: RePEc:spr:nathaz:v:92:y:2018:i:2:d:10.1007_s11069-018-3231-1
    DOI: 10.1007/s11069-018-3231-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3231-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3231-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua Bai & Guang Yu, 2016. "A Weibo-based approach to disaster informatics: incidents monitor in post-disaster situation via Weibo text negative sentiment analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1177-1196, September.
    2. Zhenghong Tang & Ligang Zhang & Fuhai Xu & Hung Vo, 2015. "Examining the role of social media in California’s drought risk management in 2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 171-193, October.
    3. Bairong Wang & Jun Zhuang, 2017. "Crisis information distribution on Twitter: a content analysis of tweets during Hurricane Sandy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 161-181, October.
    4. Zheye Wang & Xinyue Ye & Ming-Hsiang Tsou, 2016. "Spatial, temporal, and content analysis of Twitter for wildfire hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 523-540, August.
    5. Xiangyang Guan & Cynthia Chen, 2014. "Using social media data to understand and assess disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 837-850, November.
    6. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    7. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    8. Phillips, Peter C B & Ouliaris, S, 1990. "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, Econometric Society, vol. 58(1), pages 165-193, January.
    9. Qi Wang & John E Taylor, 2014. "Quantifying Human Mobility Perturbation and Resilience in Hurricane Sandy," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-5, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jake Lever & Rossella Arcucci, 2022. "Sentimental wildfire: a social-physics machine learning model for wildfire nowcasting," Journal of Computational Social Science, Springer, vol. 5(2), pages 1427-1465, November.
    2. Natalie Coleman & Chenyue Liu & Yiqing Zhao & Ali Mostafavi, 2023. "Lifestyle pattern analysis unveils recovery trajectories of communities impacted by disasters," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    3. Mingjun Ma & Qiang Gao & Zishuang Xiao & Xingshuai Hou & Beibei Hu & Lifei Jia & Wenfang Song, 2023. "Analysis of public emotion on flood disasters in southern China in 2020 based on social media data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1013-1033, September.
    4. Zhijie Sasha Dong & Lingyu Meng & Lauren Christenson & Lawrence Fulton, 2021. "Social media information sharing for natural disaster response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2077-2104, July.
    5. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    6. Masahiko Haraguchi & Akihiko Nishino & Akira Kodaka & Maura Allaire & Upmanu Lall & Liao Kuei-Hsien & Kaya Onda & Kota Tsubouchi & Naohiko Kohtake, 2022. "Human mobility data and analysis for urban resilience: A systematic review," Environment and Planning B, , vol. 49(5), pages 1507-1535, June.
    7. Rachel Samuels & John E. Taylor & Neda Mohammadi, 2020. "Silence of the Tweets: incorporating social media activity drop-offs into crisis detection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1455-1477, August.
    8. Wan-Li Zhang & Chun-Ping Chang & Yang Xuan, 2022. "The impacts of climate change on bank performance: What’s the mediating role of natural disasters?," Economic Change and Restructuring, Springer, vol. 55(3), pages 1913-1952, August.
    9. Huiyun Zhu, 2022. "Interplay between Discrete Emotions and Preventive Behavior in Health Crises: Big Data Analysis of COVID-19," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    10. Sonja I. Garske & Suzanne Elayan & Martin Sykora & Tamar Edry & Linus B. Grabenhenrich & Sandro Galea & Sarah R. Lowe & Oliver Gruebner, 2021. "Space-Time Dependence of Emotions on Twitter after a Natural Disaster," IJERPH, MDPI, vol. 18(10), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabrielle Turner-McGrievy & Amir Karami & Courtney Monroe & Heather M. Brandt, 2020. "Dietary pattern recognition on Twitter: a case example of before, during, and after four natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1035-1049, August.
    2. Martínez-Rojas, María & Pardo-Ferreira, María del Carmen & Rubio-Romero, Juan Carlos, 2018. "Twitter as a tool for the management and analysis of emergency situations: A systematic literature review," International Journal of Information Management, Elsevier, vol. 43(C), pages 196-208.
    3. Norah Al-Ballaa, 2005. "Test for cointegration based on two-stage least squares," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 707-713.
    4. Breitung, Jorg, 2001. "Rank Tests for Nonlinear Cointegration," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 331-340, July.
    5. Xiao, Zhijie, 1999. "A residual based test for the null hypothesis of cointegration," Economics Letters, Elsevier, vol. 64(2), pages 133-141, August.
    6. Christopher P. P. Shafuda & Utpal Kumar De, 2020. "Government expenditure on human capital and growth in Namibia: a time series analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-14, December.
    7. Singerman, Ariel & Lence, Sergio H. & Kimble-Evans, Amanda, 2010. "Organic Crop Prices, or 2x Conventional Ones?," Staff General Research Papers Archive 31544, Iowa State University, Department of Economics.
    8. Anna Bykhovskaya & Vadim Gorin, 2020. "Cointegration in large VARs," Papers 2006.14179, arXiv.org, revised Dec 2021.
    9. Franco, G.C. & Reisen, V.A. & Alves, F.A., 2013. "Bootstrap tests for fractional integration and cointegration: A comparison study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 19-29.
    10. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    11. Ripamonti, Alexandre, 2013. "Rational Valuation Formula (RVF) and Time Variability in Asset Rates of Return," MPRA Paper 79460, University Library of Munich, Germany.
    12. Sarah Gardiner & Jinyan Chen & Margarida Abreu Novais & Karine Dupré & J. Guy Castley, 2023. "Analyzing and Leveraging Social Media Disaster Communication of Natural Hazards: Community Sentiment and Messaging Regarding the Australian 2019/20 Bushfires," Societies, MDPI, vol. 13(6), pages 1-20, May.
    13. Husnain, Muhammad Iftikhar ul & Nasrullah, Nasrullah & Khan, Muhammad Aamir & Banerjee, Suvajit, 2021. "Scrutiny of income related drivers of energy poverty: A global perspective," Energy Policy, Elsevier, vol. 157(C).
    14. Takashi Oga, 2021. "Intertemporal Cointegration Model: A New Approach to the Lead–Lag Relationship Between Cointegrated Time Series," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(1), pages 27-53, April.
    15. James Davidson, 2013. "Cointegration and error correction," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 7, pages 165-188, Edward Elgar Publishing.
    16. Gregory, Allan W. & Hansen, Bruce E., 1996. "Residual-based tests for cointegration in models with regime shifts," Journal of Econometrics, Elsevier, vol. 70(1), pages 99-126, January.
    17. M. Ryan Haley & Harry J. Paarsch, 2004. "The stochastic implications of rent maximization: an application to stumpage rates for timber in British Columbia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(1), pages 25-48.
    18. Javier Fernandez-Macho, 2013. "A Test for the Null of Multiple Cointegrating Vectors," Economics Series Working Papers 657, University of Oxford, Department of Economics.
    19. Dayong Zhang & Marco R. Barassi & Jijun Tan, 2015. "Residual-Based Tests for Fractional Cointegration: Testing the Term Structure of Interest Rates," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1118-1140, December.
    20. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2016. "Time Series Based Hourly Traffic Flow Prediction on the GTA Freeways Using TSTVEC Model," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319287, Transportation Research Forum.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:92:y:2018:i:2:d:10.1007_s11069-018-3231-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.