IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i2d10.1007_s11069-023-06033-7.html
   My bibliography  Save this article

Analysis of public emotion on flood disasters in southern China in 2020 based on social media data

Author

Listed:
  • Mingjun Ma

    (Tianjin Normal University)

  • Qiang Gao

    (Tianjin Normal University)

  • Zishuang Xiao

    (Tianjin Normal University)

  • Xingshuai Hou

    (Tianjin Normal University)

  • Beibei Hu

    (Tianjin Normal University)

  • Lifei Jia

    (Tianjin Normal University)

  • Wenfang Song

    (Tianjin Normal University)

Abstract

The exploding popularity of social networks provides a new opportunity to study disasters and public emotion. Among the social networks, Weibo is one of the largest microblogging services in China. Taking Guangdong and Guangxi in the south of China as a case, Web Scraper was used to obtain Weibo texts related to floods in 2020. The spatial distribution of floods was analyzed using Kernel Density Estimation. Public emotion was analyzed using Natural Language Processing tools. The association between floods and public emotion was explored through correlation analysis methods. The results indicated that: (1) Weibo texts could be utilized as effective data to identify urban waterlogging risk in Guangdong and Guangxi. (2) The waterlogging was mainly distributed in the southern part of Guangdong and Guangxi, especially in the provincial capitals and coastal cities. (3) Public emotion was predominantly negative, especially during periods of heavy precipitation. (4) There was a strong correlation between public emotion and floods in spatial–temporal variation. The degree of negative public emotion was significantly influenced by the number of waterlogging points. The presented results serve as the preliminary data for future planning and designing of emergency management. Graphical abstract

Suggested Citation

  • Mingjun Ma & Qiang Gao & Zishuang Xiao & Xingshuai Hou & Beibei Hu & Lifei Jia & Wenfang Song, 2023. "Analysis of public emotion on flood disasters in southern China in 2020 based on social media data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1013-1033, September.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06033-7
    DOI: 10.1007/s11069-023-06033-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06033-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06033-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luoyang Wang & Yao Li & Hao Hou & Yan Chen & Jinjin Fan & Pin Wang & Tangao Hu, 2022. "Analyzing spatial variance of urban waterlogging disaster at multiple scales based on a hydrological and hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1915-1938, November.
    2. Hua Bai & Guang Yu, 2016. "A Weibo-based approach to disaster informatics: incidents monitor in post-disaster situation via Weibo text negative sentiment analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1177-1196, September.
    3. Yan Wang & John E. Taylor, 2018. "Coupling sentiment and human mobility in natural disasters: a Twitter-based study of the 2014 South Napa Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 907-925, June.
    4. Qing Deng & Yi Liu & Hui Zhang & Xiaolong Deng & Yefeng Ma, 2016. "A new crowdsourcing model to assess disaster using microblog data in typhoon Haiyan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1241-1256, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meijie Chu & Wentao Song & Zeyu Zhao & Tianmu Chen & Yi-chen Chiang, 2024. "Emotional contagion on social media and the simulation of intervention strategies after a disaster event: a modeling study," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lida Huang & Panpan Shi & Haichao Zhu & Tao Chen, 2022. "Early detection of emergency events from social media: a new text clustering approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 851-875, March.
    2. Zhijie Sasha Dong & Lingyu Meng & Lauren Christenson & Lawrence Fulton, 2021. "Social media information sharing for natural disaster response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2077-2104, July.
    3. Lian, Ying & Liu, Yijun & Dong, Xuefan, 2020. "Strategies for controlling false online information during natural disasters: The case of Typhoon Mangkhut in China," Technology in Society, Elsevier, vol. 62(C).
    4. Yu Zhang & Wenzhou Wu & Qi Wang & Fenzhen Su, 2017. "A Geo-Event-Based Geospatial Information Service: A Case Study of Typhoon Hazard," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    5. Sonja I. Garske & Suzanne Elayan & Martin Sykora & Tamar Edry & Linus B. Grabenhenrich & Sandro Galea & Sarah R. Lowe & Oliver Gruebner, 2021. "Space-Time Dependence of Emotions on Twitter after a Natural Disaster," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    6. Cen Song & Sijia Zhou & Kyle Hunt & Jun Zhuang, 2022. "Comprehensive Evolution Analysis of Public Perceptions Related to Pediatric Care: A Sina Weibo Case Study (2013–2020)," SAGE Open, , vol. 12(1), pages 21582440221, March.
    7. Hamed Farahmand & Wanqiu Wang & Ali Mostafavi & Mikel Maron, 2022. "Anomalous human activity fluctuations from digital trace data signal flood inundation status," Environment and Planning B, , vol. 49(7), pages 1893-1911, September.
    8. Faxi Yuan & Rui Liu, 2018. "Crowdsourcing for forensic disaster investigations: Hurricane Harvey case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1529-1546, September.
    9. Lian, Ying & Tang, Huiting & Xiang, Mengting & Dong, Xuefan, 2024. "Public attitudes and sentiments toward ChatGPT in China: A text mining analysis based on social media," Technology in Society, Elsevier, vol. 76(C).
    10. Xiaobing Yu & Hong Chen & Chenliang Li, 2019. "Evaluate Typhoon Disasters in 21st Century Maritime Silk Road by Super-Efficiency DEA," IJERPH, MDPI, vol. 16(9), pages 1-10, May.
    11. Rachel Samuels & John E. Taylor & Neda Mohammadi, 2020. "Silence of the Tweets: incorporating social media activity drop-offs into crisis detection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1455-1477, August.
    12. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    13. Qi Li & Cong Wei & Jianning Dang & Lei Cao & Li Liu, 2020. "Tracking and Analyzing Public Emotion Evolutions During COVID-19: A Case Study from the Event-Driven Perspective on Microblogs," IJERPH, MDPI, vol. 17(18), pages 1-24, September.
    14. Turgut Acikara & Bo Xia & Tan Yigitcanlar & Carol Hon, 2023. "Contribution of Social Media Analytics to Disaster Response Effectiveness: A Systematic Review of the Literature," Sustainability, MDPI, vol. 15(11), pages 1-50, May.
    15. Jake Lever & Rossella Arcucci, 2022. "Sentimental wildfire: a social-physics machine learning model for wildfire nowcasting," Journal of Computational Social Science, Springer, vol. 5(2), pages 1427-1465, November.
    16. Jiexiong Duan & Weixin Zhai & Chengqi Cheng, 2020. "Crowd Detection in Mass Gatherings Based on Social Media Data: A Case Study of the 2014 Shanghai New Year’s Eve Stampede," IJERPH, MDPI, vol. 17(22), pages 1-14, November.
    17. Natalie Coleman & Chenyue Liu & Yiqing Zhao & Ali Mostafavi, 2023. "Lifestyle pattern analysis unveils recovery trajectories of communities impacted by disasters," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    18. Yan Wang & John E. Taylor, 2018. "Coupling sentiment and human mobility in natural disasters: a Twitter-based study of the 2014 South Napa Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 907-925, June.
    19. Qingwei Xu & Kaili Xu, 2020. "Statistical Analysis and Prediction of Fatal Accidents in the Metallurgical Industry in China," IJERPH, MDPI, vol. 17(11), pages 1-20, May.
    20. Masahiko Haraguchi & Akihiko Nishino & Akira Kodaka & Maura Allaire & Upmanu Lall & Liao Kuei-Hsien & Kaya Onda & Kota Tsubouchi & Naohiko Kohtake, 2022. "Human mobility data and analysis for urban resilience: A systematic review," Environment and Planning B, , vol. 49(5), pages 1507-1535, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06033-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.