IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v75y2015i3p2081-2102.html
   My bibliography  Save this article

Incorporating climate change and morphological uncertainty into coastal change hazard assessments

Author

Listed:
  • Heather Baron
  • Peter Ruggiero
  • Nathan Wood
  • Erica Harris
  • Jonathan Allan
  • Paul Komar
  • Patrick Corcoran

Abstract

Documented and forecasted trends in rising sea levels and changes in storminess patterns have the potential to increase the frequency, magnitude, and spatial extent of coastal change hazards. To develop realistic adaptation strategies, coastal planners need information about coastal change hazards that recognizes the dynamic temporal and spatial scales of beach morphology, the climate controls on coastal change hazards, and the uncertainties surrounding the drivers and impacts of climate change. We present a probabilistic approach for quantifying and mapping coastal change hazards that incorporates the uncertainty associated with both climate change and morphological variability. To demonstrate the approach, coastal change hazard zones of arbitrary confidence levels are developed for the Tillamook County (State of Oregon, USA) coastline using a suite of simple models and a range of possible climate futures related to wave climate, sea-level rise projections, and the frequency of major El Niño events. Extreme total water levels are more influenced by wave height variability, whereas the magnitude of erosion is more influenced by sea-level rise scenarios. Morphological variability has a stronger influence on the width of coastal hazard zones than the uncertainty associated with the range of climate change scenarios. Copyright The Author(s) 2015

Suggested Citation

  • Heather Baron & Peter Ruggiero & Nathan Wood & Erica Harris & Jonathan Allan & Paul Komar & Patrick Corcoran, 2015. "Incorporating climate change and morphological uncertainty into coastal change hazard assessments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2081-2102, February.
  • Handle: RePEc:spr:nathaz:v:75:y:2015:i:3:p:2081-2102
    DOI: 10.1007/s11069-014-1417-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1417-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1417-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark A. Hemer & Yalin Fan & Nobuhito Mori & Alvaro Semedo & Xiaolan L. Wang, 2013. "Projected changes in wave climate from a multi-model ensemble," Nature Climate Change, Nature, vol. 3(5), pages 471-476, May.
    2. David Revell & Robert Battalio & Brian Spear & Peter Ruggiero & Justin Vandever, 2011. "A methodology for predicting future coastal hazards due to sea-level rise on the California Coast," Climatic Change, Springer, vol. 109(1), pages 251-276, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. C. Winter & B. G. Ruessink, 2017. "Sensitivity analysis of climate change impacts on dune erosion: case study for the Dutch Holland coast," Climatic Change, Springer, vol. 141(4), pages 685-701, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Heberger & Heather Cooley & Pablo Herrera & Peter Gleick & Eli Moore, 2011. "Potential impacts of increased coastal flooding in California due to sea-level rise," Climatic Change, Springer, vol. 109(1), pages 229-249, December.
    2. J. Sierra & M. Casas-Prat, 2014. "Analysis of potential impacts on coastal areas due to changes in wave conditions," Climatic Change, Springer, vol. 124(4), pages 861-876, June.
    3. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    4. Liu, Jin & Meucci, Alberto & Liu, Qingxiang & Babanin, Alexander V. & Ierodiaconou, Daniel & Xu, Xingkun & Young, Ian R., 2023. "A high-resolution wave energy assessment of south-east Australia based on a 40-year hindcast," Renewable Energy, Elsevier, vol. 215(C).
    5. Aydoğan, Burak & Görmüş, Tahsin & Ayat, Berna & Çarpar, Tunay, 2021. "Analysis of potential changes in the Black Sea wave power for the 21st century," Renewable Energy, Elsevier, vol. 169(C), pages 512-526.
    6. Walter Dragani & Paula Martin & Guadalupe Alonso & Jorge Codignotto & Bárbara Prario & Guido Bacino, 2013. "Wind wave climate change: Impacts on the littoral processes at the Northern Buenos Aires Province Coast, Argentina," Climatic Change, Springer, vol. 121(4), pages 649-660, December.
    7. Arguilé-Pérez, B. & Ribeiro, A.S. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2023. "Suitability of wave energy converters in northwestern Spain under the near future winter wave climate," Energy, Elsevier, vol. 278(PB).
    8. Harshinie Karunarathna & Pravin Maduwantha & Bahareh Kamranzad & Harsha Rathnasooriya & Kasun De Silva, 2020. "Impacts of Global Climate Change on the Future Ocean Wave Power Potential: A Case Study from the Indian Ocean," Energies, MDPI, vol. 13(11), pages 1-22, June.
    9. Jasper Verschuur & Dewi Bars & Caroline A. Katsman & Sierd de Vries & Roshanka Ranasinghe & Sybren S. Drijfhout & Stefan G. J. Aarninkhof, 2020. "Implications of ambiguity in Antarctic ice sheet dynamics for future coastal erosion estimates: a probabilistic assessment," Climatic Change, Springer, vol. 162(2), pages 859-876, September.
    10. Tiffany Anderson & Charles Fletcher & Matthew Barbee & L. Frazer & Bradley Romine, 2015. "Doubling of coastal erosion under rising sea level by mid-century in Hawaii," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 75-103, August.
    11. Ozkan, Cigdem & Mayo, Talea, 2019. "The renewable wave energy resource in coastal regions of the Florida peninsula," Renewable Energy, Elsevier, vol. 139(C), pages 530-537.
    12. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    13. Liu, Jin & Li, Rui & Li, Shuo & Meucci, Alberto & Young, Ian R., 2024. "Increasing wave power due to global climate change and intensification of Antarctic Oscillation," Applied Energy, Elsevier, vol. 358(C).
    14. Guido Franco & Daniel Cayan & Susanne Moser & Michael Hanemann & Myoung-Ae Jones, 2011. "Second California Assessment: integrated climate change impacts assessment of natural and managed systems. Guest editorial," Climatic Change, Springer, vol. 109(1), pages 1-19, December.
    15. Wilkie, David & Galasso, Carmine, 2020. "Impact of climate-change scenarios on offshore wind turbine structural performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Vanem, Erik, 2023. "Analysing multivariate extreme conditions using environmental contours and accounting for serial dependence," Renewable Energy, Elsevier, vol. 202(C), pages 470-482.
    17. Siddharth Narayan & Michael W Beck & Borja G Reguero & Iñigo J Losada & Bregje van Wesenbeeck & Nigel Pontee & James N Sanchirico & Jane Carter Ingram & Glenn-Marie Lange & Kelly A Burks-Copes, 2016. "The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-17, May.
    18. R. C. Winter & B. G. Ruessink, 2017. "Sensitivity analysis of climate change impacts on dune erosion: case study for the Dutch Holland coast," Climatic Change, Springer, vol. 141(4), pages 685-701, April.
    19. Patrick Barnard & Maarten Ormondt & Li Erikson & Jodi Eshleman & Cheryl Hapke & Peter Ruggiero & Peter Adams & Amy Foxgrover, 2014. "Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1095-1125, November.
    20. Chatterjee, Snigdhansu, 2019. "The scale enhanced wild bootstrap method for evaluating climate models using wavelets," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 69-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:75:y:2015:i:3:p:2081-2102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.