IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v70y2014i1p675-691.html
   My bibliography  Save this article

Mining geohazards—land subsidence caused by the dewatering of opencast coal mines: The case study of the Amyntaio coal mine, Florina, Greece

Author

Listed:
  • C. Loupasakis
  • V. Angelitsa
  • D. Rozos
  • N. Spanou

Abstract

Mining activities impact the nearby environment, causing the so-called mining hazards. The land subsidence phenomena caused by the dewatering of the mines are listed among the mining-induced catastrophic geohazards slowly affecting extensive areas around the opencasts. These large-scale geo-hazards are related to both hydrogeological and geotechnical factors, and they cause irreversible damages. The research presented aims to clarify all the components of the phenomenon and to establish the proper modelling procedure for the study of its mechanism. The site under investigation is the area extending at the west—northwest of the Amyntaio opencast coal mine at Florina Prefecture, Northern Greece. The overexploitation of the aquifers for the protection of the slopes turned the opencast to a large-diameter well, draining the surrounding area. The extensive land subsidence phenomena extend 3–4 km around the mine causing severe damages in two villages. The established results can be used for monitoring and predicting the impact of the particular mining hazard on the natural and human environment, without precluding further exploitation and mining of the energy resources. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • C. Loupasakis & V. Angelitsa & D. Rozos & N. Spanou, 2014. "Mining geohazards—land subsidence caused by the dewatering of opencast coal mines: The case study of the Amyntaio coal mine, Florina, Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 675-691, January.
  • Handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:675-691
    DOI: 10.1007/s11069-013-0837-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0837-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0837-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kavouridis, Konstantinos, 2008. "Lignite industry in Greece within a world context: Mining, energy supply and environment," Energy Policy, Elsevier, vol. 36(4), pages 1257-1272, April.
    2. F. Stecchi & F. Mancini & C. Ceppi & G. Gabbianelli, 2012. "Vulnerability to ground deformation phenomena in the city of Tuzla (BiH): a GIS and multicriteria approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2153-2165, December.
    3. Ashkan Vaziri & Larry Moore & Hosam Ali, 2010. "Monitoring systems for warning impending failures in slopes and open pit mines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 501-512, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paschalis D. Koutalakis & Ourania A. Tzoraki & Georgios I. Prazioutis & Georgios T. Gkiatas & George N. Zaimes, 2021. "Can Drones Map Earth Cracks? Landslide Measurements in North Greece Using UAV Photogrammetry for Nature-Based Solutions," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    2. Yafei Yuan & Guangli Guo & Cheng Huang & Yu Chen & Huaizhan Li & Hui Zheng & Yonghua Hu, 2024. "Breakage Patterns of High-Level Thick Weakly Cemented Overburden for Coal Safe and Sustainable Mining," Sustainability, MDPI, vol. 16(13), pages 1-16, July.
    3. Chunyi Li & Laizhong Ding & Ximin Cui & Yuling Zhao & Yihang He & Wenzhi Zhang & Zhihui Bai, 2022. "Calculation Model for Progressive Residual Surface Subsidence above Mined-Out Areas Based on Logistic Time Function," Energies, MDPI, vol. 15(14), pages 1-20, July.
    4. Hamidreza Gharechaee & Aliakbar Nazari Samani & Shahram Khalighi Sigaroodi & Abolfazl Baloochiyan & Maryam Sadat Moosavi & Jason A. Hubbart & Seyed Mohammad Moein Sadeghi, 2023. "Land Subsidence Susceptibility Mapping Using Interferometric Synthetic Aperture Radar (InSAR) and Machine Learning Models in a Semiarid Region of Iran," Land, MDPI, vol. 12(4), pages 1-20, April.
    5. Xiaoyang Liu & Zhongke Bai & Huading Shi & Wei Zhou & Xiaocai Liu, 2019. "Heavy metal pollution of soils from coal mines in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1163-1177, November.
    6. Yu Zhang & Wen-xi Lu & Qing-chun Yang, 2015. "The impacts of mining exploitation on the environment in the Changchun–Jilin–Tumen economic area, Northeast China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1019-1038, March.
    7. Subhash Chandra & Isha Medha & Jayanta Bhattacharya & Kumar Raja Vanapalli & Biswajit Samal, 2022. "Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil," Sustainability, MDPI, vol. 14(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    2. Renato Macciotta & Michael Hendry & C. Derek Martin, 2016. "Developing an early warning system for a very slow landslide based on displacement monitoring," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 887-907, March.
    3. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    4. Kaldellis, J.K., 2011. "Critical evaluation of financial supporting schemes for wind-based projects: Case study Greece," Energy Policy, Elsevier, vol. 39(5), pages 2490-2500, May.
    5. Badera, Jarosław & Kocoń, Paweł, 2014. "Local community opinions regarding the socio-environmental aspects of lignite surface mining: Experiences from central Poland," Energy Policy, Elsevier, vol. 66(C), pages 507-516.
    6. Zhao, Qi & Guo, Ming & Feng, Fangfang & Li, Junjun & Guan, Hangtian, 2024. "Path analysis of digital development on the green industrial transformation of Chinese resource-based enterprises," Resources Policy, Elsevier, vol. 93(C).
    7. Karasmanaki, Evangelia & Ioannou, Konstantinos & Katsaounis, Konstantinos & Tsantopoulos, Georgios, 2020. "The attitude of the local community towards investments in lignite before transitioning to the post-lignite era: The case of Western Macedonia, Greece," Resources Policy, Elsevier, vol. 68(C).
    8. Ryszard Staniszewski & Dorota Cais-Sokolińska & Łukasz K. Kaczyński & Paulina Bielska, 2021. "Use of Bioluminescence for Monitoring Brown Coal Mine Waters from Deep and Surface Drainage," Energies, MDPI, vol. 14(12), pages 1-10, June.
    9. Widera, Marek & Kasztelewicz, Zbigniew & Ptak, Miranda, 2016. "Lignite mining and electricity generation in Poland: The current state and future prospects," Energy Policy, Elsevier, vol. 92(C), pages 151-157.
    10. Hamidreza Gharechaee & Aliakbar Nazari Samani & Shahram Khalighi Sigaroodi & Abolfazl Baloochiyan & Maryam Sadat Moosavi & Jason A. Hubbart & Seyed Mohammad Moein Sadeghi, 2023. "Land Subsidence Susceptibility Mapping Using Interferometric Synthetic Aperture Radar (InSAR) and Machine Learning Models in a Semiarid Region of Iran," Land, MDPI, vol. 12(4), pages 1-20, April.
    11. Dios, M. & Souto, J.A. & Casares, J.J., 2013. "Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant," Energy, Elsevier, vol. 53(C), pages 40-51.
    12. Kaldellis, J.K. & Kapsali, M., 2014. "Evaluation of the long-term environmental performance of Greek lignite-fired power stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 472-485.
    13. Jovancic, Predrag & Tanasijevic, Milos & Ivezic, Dejan, 2011. "Serbian energy development based on lignite production," Energy Policy, Elsevier, vol. 39(3), pages 1191-1199, March.
    14. Renato Macciotta & Michael Hendry & C. Martin, 2016. "Developing an early warning system for a very slow landslide based on displacement monitoring," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 887-907, March.
    15. Berumen, Sergio A. & Pérez-Megino, Luis P., 2016. "Ranking Socioeconómico para el Desarrollo de las Regiones Carboníferas en Europa || Socioeconomic Ranking for the Development of coal-mining regions in Europe," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 21(1), pages 39-57, June.
    16. Vangelis Marinakis & Alexandros Flamos & Giorgos Stamtsis & Ioannis Georgizas & Yannis Maniatis & Haris Doukas, 2020. "The Efforts towards and Challenges of Greece’s Post-Lignite Era: The Case of Megalopolis," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    17. Sunwen Du & Guorui Feng & Jianmin Wang & Shizhe Feng & Reza Malekian & Zhixiong Li, 2019. "A New Machine-Learning Prediction Model for Slope Deformation of an Open-Pit Mine: An Evaluation of Field Data," Energies, MDPI, vol. 12(7), pages 1-15, April.
    18. Arapostathis, Stathis & Fotopoulos, Yannis, 2019. "Transnational energy flows, capacity building and Greece's quest for energy autarky, 1914–2010," Energy Policy, Elsevier, vol. 127(C), pages 39-50.
    19. Antonia Gkergki, 2020. "The relationship between energy consumption and economic growth: New evidence from Greece," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2020(2), pages 131-153.
    20. Ye-Shuang Xu & Shui-Long Shen & Yan-Jun Du & Jin-Chun Chai & Suksun Horpibulsuk, 2013. "Modelling the cutoff behavior of underground structure in multi-aquifer-aquitard groundwater system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 731-748, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:675-691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.