IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7266-d838228.html
   My bibliography  Save this article

Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil

Author

Listed:
  • Subhash Chandra

    (Indian Institute of Technology Kharagpur, School of Environmental Science and Engineering, West Bengal 721302, India
    Department of Civil Engineering, Vignan’s Institute of Information Technology, Visakhapatnam 530049, India)

  • Isha Medha

    (Department of Civil Engineering, Vignan’s Institute of Information Technology, Visakhapatnam 530049, India
    Department of Mining Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India)

  • Jayanta Bhattacharya

    (Indian Institute of Technology Kharagpur, School of Environmental Science and Engineering, West Bengal 721302, India
    Department of Mining Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India)

  • Kumar Raja Vanapalli

    (Indian Institute of Technology Kharagpur, School of Environmental Science and Engineering, West Bengal 721302, India)

  • Biswajit Samal

    (Indian Institute of Technology Kharagpur, School of Environmental Science and Engineering, West Bengal 721302, India)

Abstract

Contamination of soil with heavy metals is a worldwide problem, which causes heavy metals to release into the environment. Remediation of such contaminated soil is essential to protect the environment. The aims of this study are: first, to compare the effect of biochar and the joint application of biochar with fertilizer for the phytoremediation of heavy metals-contaminated soil using Acacia auriculiformis ; second, to study the effect of the application rate of biochar in improving the physicochemical properties of the soil. The soil samples were collected from an active coal mine dump and assessed for their physicochemical properties and heavy metals toxicity. Initial results indicated that the soil has poor physicochemical properties and was contaminated with the presence of heavy metals such as Zn, Ni, Cu, Cr, and Co. Later, the heavy metals-contaminated soil was mixed with the 400 and 600 °C biochar, as well as the respective biochar–fertilizer combination in varying mixing ratios from 0.5 to 5% ( w / w ) and subjected to a pot-culture study. The results showed that the application of both varieties of biochar in combination with fertilizer substantially improved the physicochemical properties and reduced the heavy metals toxicity in the soil. The biochar and fertilizer joint application also substantially improved the soil physiochemical properties by increasing the application rate of both varieties of biochar from 0.5 to 5%. The soil fertility index (SFI) of the biochar and biochar–fertilizer amended soil increased by 49.46 and 52.22%, respectively. The plant’s physiological analysis results indicated a substantial increase in the plant’s shoot and root biomass through the application of biochar and biochar–fertilizer compared to the control. On the other hand, it significantly reduced the heavy metals accumulation and, hence, the secretion of proline and glutathione hormones in the plant cells. Therefore, it can be concluded that the joint application of biochar with the application rate varying between 2.5 to 5% ( w / w ) with the fertilizer significantly improved the physicochemical properties of the soil and reduced the heavy metals toxicity compared to the controlled study.

Suggested Citation

  • Subhash Chandra & Isha Medha & Jayanta Bhattacharya & Kumar Raja Vanapalli & Biswajit Samal, 2022. "Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7266-:d:838228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Loupasakis & V. Angelitsa & D. Rozos & N. Spanou, 2014. "Mining geohazards—land subsidence caused by the dewatering of opencast coal mines: The case study of the Amyntaio coal mine, Florina, Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 675-691, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subhash Chandra & Isha Medha & Ashwani Kumar Tiwari, 2023. "The Role of Modified Biochar for the Remediation of Coal Mining-Impacted Contaminated Soil: A Review," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
    2. Isha Medha & Subhash Chandra & Jayanta Bhattacharya, 2023. "Elucidating the Potential of Biochar-Bentonite Composite and Kaolinite-Based Seed Balls for the Remediation of Coal Mining Impacted Heavy Metals Contaminated Soil," Sustainability, MDPI, vol. 15(17), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paschalis D. Koutalakis & Ourania A. Tzoraki & Georgios I. Prazioutis & Georgios T. Gkiatas & George N. Zaimes, 2021. "Can Drones Map Earth Cracks? Landslide Measurements in North Greece Using UAV Photogrammetry for Nature-Based Solutions," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    2. Xiaoyang Liu & Zhongke Bai & Huading Shi & Wei Zhou & Xiaocai Liu, 2019. "Heavy metal pollution of soils from coal mines in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1163-1177, November.
    3. Yafei Yuan & Guangli Guo & Cheng Huang & Yu Chen & Huaizhan Li & Hui Zheng & Yonghua Hu, 2024. "Breakage Patterns of High-Level Thick Weakly Cemented Overburden for Coal Safe and Sustainable Mining," Sustainability, MDPI, vol. 16(13), pages 1-16, July.
    4. Hamidreza Gharechaee & Aliakbar Nazari Samani & Shahram Khalighi Sigaroodi & Abolfazl Baloochiyan & Maryam Sadat Moosavi & Jason A. Hubbart & Seyed Mohammad Moein Sadeghi, 2023. "Land Subsidence Susceptibility Mapping Using Interferometric Synthetic Aperture Radar (InSAR) and Machine Learning Models in a Semiarid Region of Iran," Land, MDPI, vol. 12(4), pages 1-20, April.
    5. Chunyi Li & Laizhong Ding & Ximin Cui & Yuling Zhao & Yihang He & Wenzhi Zhang & Zhihui Bai, 2022. "Calculation Model for Progressive Residual Surface Subsidence above Mined-Out Areas Based on Logistic Time Function," Energies, MDPI, vol. 15(14), pages 1-20, July.
    6. Yu Zhang & Wen-xi Lu & Qing-chun Yang, 2015. "The impacts of mining exploitation on the environment in the Changchun–Jilin–Tumen economic area, Northeast China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1019-1038, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7266-:d:838228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.