IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v66y2013i2p955-983.html
   My bibliography  Save this article

Implementation/optimization of moving least squares response surfaces for approximation of hurricane/storm surge and wave responses

Author

Listed:
  • Alexandros Taflanidis
  • Gaofeng Jia
  • Andrew Kennedy
  • Jane Smith

Abstract

One of the important recent advances in the field of hurricane/storm modelling has been the development of high-fidelity numerical simulation models for reliable and accurate prediction of wave and surge responses. The computational cost associated with these models has simultaneously created an incentive for researchers to investigate surrogate modelling (i.e. metamodeling) and interpolation/regression methodologies to efficiently approximate hurricane/storm responses exploiting existing databases of high-fidelity simulations. Moving least squares (MLS) response surfaces were recently proposed as such an approximation methodology, providing the ability to efficiently describe different responses of interest (such as surge and wave heights) in a large coastal region that may involve thousands of points for which the hurricane impact needs to be estimated. This paper discusses further implementation details and focuses on optimization characteristics of this surrogate modelling approach. The approximation of different response characteristics is considered, and special attention is given to predicting the storm surge for inland locations, for which the possibility of the location remaining dry needs to be additionally addressed. The optimal selection of the basis functions for the response surface and of the parameters of the MLS character of the approximation is discussed in detail, and the impact of the number of high-fidelity simulations informing the surrogate model is also investigated. Different normalizations of the response as well as choices for the objective function for the optimization problem are considered, and their impact on the accuracy of the resultant (under these choices) surrogate model is examined. Details for implementation of the methodology for efficient coastal risk assessment are reviewed, and the influence in the analysis of the model prediction error introduced through the surrogate modelling is discussed. A case study is provided, utilizing a recently developed database of high-fidelity simulations for the Hawaiian Islands. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Alexandros Taflanidis & Gaofeng Jia & Andrew Kennedy & Jane Smith, 2013. "Implementation/optimization of moving least squares response surfaces for approximation of hurricane/storm surge and wave responses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 955-983, March.
  • Handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:955-983
    DOI: 10.1007/s11069-012-0520-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0520-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0520-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Condon & Y. Peter Sheng, 2012. "Evaluation of coastal inundation hazard for present and future climates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 345-373, June.
    2. Youn Song & Jennifer Irish & Ikpoto Udoh, 2012. "Regional attributes of hurricane surge response functions for hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1475-1490, November.
    3. Jennifer Irish & Donald Resio & Mary Cialone, 2009. "A surge response function approach to coastal hazard assessment. Part 2: Quantification of spatial attributes of response functions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 183-205, October.
    4. Donald Resio & Jennifer Irish & Mary Cialone, 2009. "A surge response function approach to coastal hazard assessment – part 1: basic concepts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 163-182, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Matthew Plumlee & Taylor G. Asher & Elaine Spiller & Richard A. Luettich & Brian Blanton & Tracy L. Kijewski-Correa & Andrew Kennedy & Lauren Schmie, 2021. "Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1349-1386, November.
    2. Giuseppe Cavaliere & Anton Skrobotov & A. M. Robert Taylor, 2019. "Wild bootstrap seasonal unit root tests for time series with periodic nonstationary volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(5), pages 509-532, May.
    3. Li, Min & Wang, Ruo-Qian & Jia, Gaofeng, 2020. "Efficient dimension reduction and surrogate-based sensitivity analysis for expensive models with high-dimensional outputs," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaofeng Jia & Alexandros Taflanidis & Norberto Nadal-Caraballo & Jeffrey Melby & Andrew Kennedy & Jane Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    2. Gaofeng Jia & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Andrew B. Kennedy & Jane M. Smith, 2016. "Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 909-938, March.
    3. Nick Taylor & Jennifer Irish & Ikpoto Udoh & Matthew Bilskie & Scott Hagen, 2015. "Development and uncertainty quantification of hurricane surge response functions for hazard assessment in coastal bays," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1103-1123, June.
    4. Jize Zhang & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Jeffrey A. Melby & Fatimata Diop, 2018. "Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1225-1253, December.
    5. Jung, WoongHee & Taflanidis, Alexandros A. & Kyprioti, Aikaterini P. & Zhang, Jize, 2024. "Adaptive multi-fidelity Monte Carlo for real-time probabilistic storm surge predictions," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    6. Donald Resio & Jennifer Irish & Joannes Westerink & Nancy Powell, 2013. "The effect of uncertainty on estimates of hurricane surge hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1443-1459, April.
    7. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    8. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Matthew Plumlee & Taylor G. Asher & Elaine Spiller & Richard A. Luettich & Brian Blanton & Tracy L. Kijewski-Correa & Andrew Kennedy & Lauren Schmie, 2021. "Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1349-1386, November.
    9. J. Rohmer & S. Lecacheux & R. Pedreros & H. Quetelard & F. Bonnardot & D. Idier, 2016. "Dynamic parameter sensitivity in numerical modelling of cyclone-induced waves: a multi-look approach using advanced meta-modelling techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1765-1792, December.
    10. Donald T. Resio & Nancy Powell & Mary Cialone & Himangshu S. Das & Joannes J. Westerink, 2017. "Quantifying impacts of forecast uncertainties on predicted storm surges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1423-1449, September.
    11. Chih-Hung Hsu & Francisco Olivera & Jennifer L. Irish, 2018. "A hurricane surge risk assessment framework using the joint probability method and surge response functions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 7-28, April.
    12. Youn Song & Jennifer Irish & Ikpoto Udoh, 2012. "Regional attributes of hurricane surge response functions for hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1475-1490, November.
    13. Grant Hutchings & Bruno Sansó & James Gattiker & Devin Francom & Donatella Pasqualini, 2023. "Comparing emulation methods for a high‐resolution storm surge model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
    14. Donald T. Resio & Taylor G. Asher & Jennifer L. Irish, 2017. "The effects of natural structure on estimated tropical cyclone surge extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1609-1637, September.
    15. Jie Song & Zhong-Ren Peng & Liyuan Zhao & Chih-Hung Hsu, 2016. "Developing a theoretical framework for integrated vulnerability of businesses to sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1219-1239, November.
    16. Antony Joseph & R. Prabhudesai & Prakash Mehra & V. Sanil Kumar & K. Radhakrishnan & Vijay Kumar & K. Ashok Kumar & Yogesh Agarwadekar & U. Bhat & Ryan Luis & Pradhan Rivankar & Blossom Viegas, 2011. "Response of west Indian coastal regions and Kavaratti lagoon to the November-2009 tropical cyclone Phyan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 293-312, May.
    17. Mir Mousavi & Jennifer Irish & Ashley Frey & Francisco Olivera & Billy Edge, 2011. "Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding," Climatic Change, Springer, vol. 104(3), pages 575-597, February.
    18. Donald Resio & Jennifer Irish & Mary Cialone, 2009. "A surge response function approach to coastal hazard assessment – part 1: basic concepts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 163-182, October.
    19. Aikaterini P. Kyprioti & Alexandros A. Taflanidis & Norberto C. Nadal-Caraballo & Madison O. Campbell, 2021. "Incorporation of sea level rise in storm surge surrogate modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 531-563, January.
    20. Matt Lewis & Kevin Horsburgh & Paul Bates, 2014. "Bay of Bengal cyclone extreme water level estimate uncertainty," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 983-996, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:955-983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.