IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v62y2012i2p345-373.html
   My bibliography  Save this article

Evaluation of coastal inundation hazard for present and future climates

Author

Listed:
  • Andrew Condon
  • Y. Peter Sheng

Abstract

Coastal inundation from hurricane storm surges causes catastrophic damage to lives and property, as evidenced by recent hurricanes including Katrina and Wilma in 2005 and Ike in 2008. Changes in hurricane activity and sea level due to a warming climate, together with growing coastal population, are expected to increase the potential for loss of property and lives. Current inundation hazard maps: Base Flood Elevation maps and Maximum of Maximums are computationally expensive to create in order to fully represent the hurricane climatology, and do not account for climate change. This paper evaluates the coastal inundation hazard in Southwest Florida for present and future climates, using a high resolution storm surge modeling system, CH3D-SSMS, and an optimal storm ensemble with multivariate interpolation, while accounting for climate change. Storm surges associated with the optimal storms are simulated with CH3D-SSMS and the results are used to obtain the response to any storm via interpolation, allowing accurate representation of the hurricane climatology and efficient generation of hazard maps. Incorporating the impact of anticipated climate change on hurricane and sea level, the inundation maps for future climate scenarios are made and affected people and property estimated. The future climate scenarios produce little change to coastal inundation, due likely to the reduction in hurricane frequency, except when extreme sea level rise is included. Calculated coastal inundation due to sea level rise without using a coastal surge model is also determined and shown to significantly overestimate the inundation due to neglect of land dissipation. Copyright The Author(s) 2012

Suggested Citation

  • Andrew Condon & Y. Peter Sheng, 2012. "Evaluation of coastal inundation hazard for present and future climates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 345-373, June.
  • Handle: RePEc:spr:nathaz:v:62:y:2012:i:2:p:345-373
    DOI: 10.1007/s11069-011-9996-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9996-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9996-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Maurice Danard & Adam Munro & Tad Murty, 2003. "Storm Surge Hazard in Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(2), pages 407-434, March.
    3. Gabriel A. Vecchi & Brian J. Soden, 2007. "Effect of remote sea surface temperature change on tropical cyclone potential intensity," Nature, Nature, vol. 450(7172), pages 1066-1070, December.
    4. Jennifer Irish & Donald Resio & Mary Cialone, 2009. "A surge response function approach to coastal hazard assessment. Part 2: Quantification of spatial attributes of response functions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 183-205, October.
    5. Christopher W. Landsea, 2005. "Hurricanes and global warming," Nature, Nature, vol. 438(7071), pages 11-12, December.
    6. Mir Mousavi & Jennifer Irish & Ashley Frey & Francisco Olivera & Billy Edge, 2011. "Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding," Climatic Change, Springer, vol. 104(3), pages 575-597, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Reza Hashemi & Malcolm L. Spaulding & Alex Shaw & Hamed Farhadi & Matt Lewis, 2016. "An efficient artificial intelligence model for prediction of tropical storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 471-491, May.
    2. Jorge A. Ramirez & Michal Lichter & Tom J. Coulthard & Chris Skinner, 2016. "Hyper-resolution mapping of regional storm surge and tide flooding: comparison of static and dynamic models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 571-590, May.
    3. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    4. Shuaikang Zhao & Ziwei Liu & Xiaoran Wei & Bo Li & Yefei Bai, 2021. "Intercomparison of Empirical Formulations of Maximum Wind Radius in Parametric Tropical Storm Modeling over Zhoushan Archipelago," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    5. Han Tang & Steven Chien & Marouane Temimi & Cheryl Blain & Qu Ke & Liuhui Zhao & Simon Kraatz, 2013. "Vulnerability of population and transportation infrastructure at the east bank of Delaware Bay due to coastal flooding in sea-level rise conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 141-163, October.
    6. Alexandros Taflanidis & Gaofeng Jia & Andrew Kennedy & Jane Smith, 2013. "Implementation/optimization of moving least squares response surfaces for approximation of hurricane/storm surge and wave responses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 955-983, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mir Mousavi & Jennifer Irish & Ashley Frey & Francisco Olivera & Billy Edge, 2011. "Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding," Climatic Change, Springer, vol. 104(3), pages 575-597, February.
    2. Karthik Balaguru & David R. Judi & L. Ruby Leung, 2016. "Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity," Climatic Change, Springer, vol. 138(1), pages 99-110, September.
    3. Bosello, Francesco & De Cian, Enrica, 2014. "Climate change, sea level rise, and coastal disasters. A review of modeling practices," Energy Economics, Elsevier, vol. 46(C), pages 593-605.
    4. Stanley Changnon, 2009. "Characteristics of severe Atlantic hurricanes in the United States: 1949–2006," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 329-337, March.
    5. Dasgupta, Susmita & Laplante, Benoit & Murray, Siobhan & Wheeler, David, 2009. "Sea-level rise and storm surges : a comparative analysis of impacts in developing countries," Policy Research Working Paper Series 4901, The World Bank.
    6. Raphaël Rousseau-Rizzi & Kerry Emanuel, 2022. "Natural and anthropogenic contributions to the hurricane drought of the 1970s–1980s," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    8. Susmita Dasgupta & Benoit Laplante & Siobhan Murray & David Wheeler, 2009. "Climate Change and the Future Impacts of Storm-Surge Disasters in Developing Countries," Working Papers 182, Center for Global Development.
    9. Graciano Yumul & Nathaniel Servando & Leilanie Suerte & Mae Magarzo & Leo Juguan & Carla Dimalanta, 2012. "Tropical cyclone–southwest monsoon interaction and the 2008 floods and landslides in Panay island, central Philippines: meteorological and geological factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 827-840, July.
    10. Lee, Ji Yun & Ellingwood, Bruce R., 2017. "A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 100-107.
    11. Debashis Paul & Jagabandhu Panda & Ashish Routray, 2022. "Ocean and atmospheric characteristics associated with the cyclogenesis and rapid intensification of NIO super cyclonic storms during 1981–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 261-289, October.
    12. Kerry Emanuel, 2021. "Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
    14. Michela Biasutti & Adam Sobel & Suzana Camargo & Timothy Creyts, 2012. "Projected changes in the physical climate of the Gulf Coast and Caribbean," Climatic Change, Springer, vol. 112(3), pages 819-845, June.
    15. James M. Done & Debasish PaiMazumder & Erin Towler & Chandra M. Kishtawal, 2018. "Estimating impacts of North Atlantic tropical cyclones using an index of damage potential," Climatic Change, Springer, vol. 146(3), pages 561-573, February.
    16. Andrea Staid & Seth Guikema & Roshanak Nateghi & Steven Quiring & Michael Gao, 2014. "Simulation of tropical cyclone impacts to the U.S. power system under climate change scenarios," Climatic Change, Springer, vol. 127(3), pages 535-546, December.
    17. Pelli, Martino & Tschopp, Jeanne & Bezmaternykh, Natalia & Eklou, Kodjovi M., 2023. "In the eye of the storm: Firms and capital destruction in India," Journal of Urban Economics, Elsevier, vol. 134(C).
    18. Kelsey Ellis & Linda Sylvester & Jill Trepanier, 2015. "Spatiotemporal patterns of extreme hurricanes impacting US coastal cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2733-2749, February.
    19. Davina Passeri & Scott Hagen & Matthew Bilskie & Stephen Medeiros, 2015. "On the significance of incorporating shoreline changes for evaluating coastal hydrodynamics under sea level rise scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1599-1617, January.
    20. Nekeisha Spencer & Eric Strobl, 2022. "Poverty and hurricane risk exposure in Jamaica," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 47(1), pages 141-157, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:62:y:2012:i:2:p:345-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.