IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v62y2012i3p953-970.html
   My bibliography  Save this article

Integration of GIS and remote sensing for estimation of soil loss and prioritization of critical sub-catchments: a case study of Tapacurá catchment

Author

Listed:
  • Richarde Silva
  • Suzana Montenegro
  • Celso Santos

Abstract

Mapping of erosion risk areas is an important tool for the planning of natural resources management, allowing researchers to propose the modification of land use properly and implement more sustainable long-term management strategies. The objective of this study was to assess and identify critical sub-catchments for soil conservation management using the USLE, GIS, and remote sensing techniques. The Tapacurá catchment is one of the planning units for water resource management of the Recife Metropolitan Region. Maps of the erosivity (R), erodibility (K), slope (LS), cover-management (C), and support practice (P) factors were derived from the climate database, digital elevation model, and soil and land-use maps. In order to validate the simulation process, total sediment delivery ratio was estimated. The results showed a mean sediment delivery ratio (SDR) of around 11.5 % and a calculated mean sediment yield of 0.108 t ha −1 year −1 , which is close to the observed one, 0.169 t ha −1 year −1 . The obtained soil loss map could be considered as a useful tool for environmental monitoring and water resources management. The methodology applied showed acceptable precision and allowed the identification of the most susceptible areas to soil erosion by water, constituting an important predictive tool for soil and environmental management in this region, which is highly relevant for the prediction of varying development scenarios for Tapacurá catchment. This approach can be applied to other areas for simple and reliable identification of critical areas of soil erosion in catchments. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Richarde Silva & Suzana Montenegro & Celso Santos, 2012. "Integration of GIS and remote sensing for estimation of soil loss and prioritization of critical sub-catchments: a case study of Tapacurá catchment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 953-970, July.
  • Handle: RePEc:spr:nathaz:v:62:y:2012:i:3:p:953-970
    DOI: 10.1007/s11069-012-0128-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0128-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0128-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashish Pandey & V. Chowdary & B. Mal, 2007. "Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(4), pages 729-746, April.
    2. Sreenivasulu Vemu & Udaya Pinnamaneni, 2011. "Estimation of spatial patterns of soil erosion using remote sensing and GIS: a case study of Indravati catchment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1299-1315, December.
    3. P. Dabral & Neelakshi Baithuri & Ashish Pandey, 2008. "Soil Erosion Assessment in a Hilly Catchment of North Eastern India Using USLE, GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1783-1798, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albert Poponi Maniraho & Richard Mind’je & Wenjiang Liu & Vincent Nzabarinda & Patient Mindje Kayumba & Lamek Nahayo & Adeline Umugwaneza & Solange Uwamahoro & Lanhai Li, 2021. "Application of the Adapted Approach for Crop Management Factor to Assess Soil Erosion Risk in an Agricultural Area of Rwanda," Land, MDPI, vol. 10(10), pages 1-24, October.
    2. Nektarios N. Kourgialas & Georgios C. Koubouris & George P. Karatzas & Ioannis Metzidakis, 2016. "Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: the effect of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 65-81, October.
    3. Rong Zhang & Celso Santos & Madalena Moreira & Paula Freire & João Corte-Real, 2013. "Automatic Calibration of the SHETRAN Hydrological Modelling System Using MSCE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4053-4068, September.
    4. Morteza Akbari & Ehsan Neamatollahi & Hadi Memarian & Mohammad Alizadeh Noughani, 2023. "Assessing impacts of floods disaster on soil erosion risk based on the RUSLE-GloSEM approach in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1689-1710, June.
    5. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.
    6. Yanfang Hu & Guohang Tian & Audrey Mayer & Ruizhen He, 2015. "Risk assessment of soil erosion by application of remote sensing and GIS in Yanshan Reservoir catchment, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 277-289, October.
    7. Ranghu Wang & Shuwen Zhang & Jiuchun Yang & Luoman Pu & Chaobin Yang & Lingxue Yu & Liping Chang & Kun Bu, 2016. "Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China," Sustainability, MDPI, vol. 8(4), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demetris Zarris & Marianna Vlastara & Dionysia Panagoulia, 2011. "Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3785-3803, November.
    2. Wen-Chieh Chou, 2010. "Modelling Watershed Scale Soil Loss Prediction and Sediment Yield Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2075-2090, August.
    3. Vesna Đukić & Zoran Radić, 2014. "GIS Based Estimation of Sediment Discharge and Areas of Soil Erosion and Deposition for the Torrential Lukovska River Catchment in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4567-4581, October.
    4. Amit Kumar & Mamta Devi & Benidhar Deshmukh, 2014. "Integrated Remote Sensing and Geographic Information System Based RUSLE Modelling for Estimation of Soil Loss in Western Himalaya, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3307-3317, August.
    5. R. Singh & R. Panda & K. Satapathy & S. Ngachan, 2012. "Runoff and Sediment Yield Modelling for a Treated Hilly Watershed in Eastern Himalaya Using the Water Erosion Prediction Project Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 643-665, February.
    6. Sagarika Patowary & Arup Kumar Sarma, 2018. "GIS-Based Estimation of Soil Loss from Hilly Urban Area Incorporating Hill Cut Factor into RUSLE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3535-3547, August.
    7. Paulo de Oliveira & Teodorico Sobrinho & Dulce Rodrigues & Elói Panachuki, 2011. "Erosion Risk Mapping Applied to Environmental Zoning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 1021-1036, February.
    8. R. Jaiswal & T. Thomas & R. Galkate & N. Ghosh & S. Singh, 2014. "Watershed Prioritization Using Saaty’s AHP Based Decision Support for Soil Conservation Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 475-494, January.
    9. Manoj Jain & Debjyoti Das, 2010. "Estimation of Sediment Yield and Areas of Soil Erosion and Deposition for Watershed Prioritization using GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2091-2112, August.
    10. Ch. Jyotiprava Dash & N. K. Das & Partha Pratim Adhikary, 2019. "Rainfall erosivity and erosivity density in Eastern Ghats Highland of east India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 727-746, June.
    11. Susanta Das & Proloy Deb & Pradip Kumar Bora & Prafull Katre, 2020. "Comparison of RUSLE and MMF Soil Loss Models and Evaluation of Catchment Scale Best Management Practices for a Mountainous Watershed in India," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    12. Ye Xiao & Zhigang Huang & Yulin Ling & Shenwen Cai & Boping Zeng & Sheng Liang & Xiao Wang, 2022. "Effects of Forest Vegetation Restoration on Soil Organic Carbon and Its Labile Fractions in the Danxia Landform of China," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    13. Dongli Chen & Degang Yang & Xinhuan Zhang & Yannan Zhao & Yufang Zhang, 2018. "Spatial Suitability Evaluation of an Arid City Based on the Perspective of Major Function Oriented Zoning: A Case Study of Urumqi City in Xinjiang, China," Sustainability, MDPI, vol. 10(9), pages 1-18, August.
    14. Kamel Khanchoul & Mahmoud Tourki, 2020. "Assessment and Mapping of Soil Sensitivity to Erosion Using GIS in Mellegue Catchment, Northeast of Algeria," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 4(1), pages 8-14, February.
    15. Subhasis Giri & Zeyuan Qiu & Tony Prato & Biliang Luo, 2016. "An Integrated Approach for Targeting Critical Source Areas to Control Nonpoint Source Pollution in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5087-5100, November.
    16. P. Dabral & Neelakshi Baithuri & Ashish Pandey, 2008. "Soil Erosion Assessment in a Hilly Catchment of North Eastern India Using USLE, GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1783-1798, December.
    17. Md Nawazuzzoha & Md. Mamoon Rashid & Prabuddh Kumar Mishra & Kamal Abdelrahman & Mohammed S. Fnais & Hasan Raja Naqvi, 2024. "Empirical Modeling of Soil Loss and Yield Utilizing RUSLE and SYI: A Geospatial Study in South Sikkim, Teesta Basin," Land, MDPI, vol. 13(10), pages 1-17, October.
    18. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    19. Bashar Bashir & Abdullah Alsalman, 2024. "Morphometric and Soil Erosion Characterization Based on Geospatial Analysis and Drainage Basin Prioritization of the Rabigh Area Along the Eastern Red Sea Coastal Plain, Saudi Arabia," Sustainability, MDPI, vol. 16(20), pages 1-26, October.
    20. Zhijie Wang & Yuan Su, 2020. "Assessment of Soil Erosion in the Qinba Mountains of the Southern Shaanxi Province in China Using the RUSLE Model," Sustainability, MDPI, vol. 12(5), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:62:y:2012:i:3:p:953-970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.