IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12283-d926947.html
   My bibliography  Save this article

Effects of Forest Vegetation Restoration on Soil Organic Carbon and Its Labile Fractions in the Danxia Landform of China

Author

Listed:
  • Ye Xiao

    (College of Resources and Environment, Zunyi Normal University, Zunyi 563006, China)

  • Zhigang Huang

    (College of Biology and Agricultural Science and Technology, Zunyi Normal University, Zunyi 563006, China)

  • Yulin Ling

    (College of Resources and Environment, Zunyi Normal University, Zunyi 563006, China)

  • Shenwen Cai

    (College of Resources and Environment, Zunyi Normal University, Zunyi 563006, China)

  • Boping Zeng

    (College of Biology and Agricultural Science and Technology, Zunyi Normal University, Zunyi 563006, China)

  • Sheng Liang

    (Guizhou Xishui National Nature Reserve Administration, Xishui 564600, China)

  • Xiao Wang

    (Guizhou Xishui National Nature Reserve Administration, Xishui 564600, China)

Abstract

The Danxia landform is a unique red bed landform in China. The effects of vegetation restoration on soil organic carbon (SOC) components are still poorly understood in the Danxia landform region of southwest China. In this study, soil samples were collected from selected five different vegetation restoration types (shrub (SH), mixed conifer–broadleaf forest (MCBF), evergreen broad-leaved forest (EBF), Chinese fir forest (CFF), and bamboo forest (BF)) at 0–30 cm depth to discuss the concentrations and stocks of SOC and its labile organic carbon (LOC) fractions ((dissolved organic C (DOC), microbial biomass C (MBC), and easily oxidized organic C (EOC)) and their relationship with soil physicochemical properties and enzyme activities. The results indicated that the contents of SOC and LOC fractions as well as SOC stocks declined with increasing soil depth in five vegetation restoration types. At 0–30 cm depth, BF and CFF showed higher the average concentrations and total stocks of SOC and EOC compared with SH, EBF, and MCBF. The highest average DOC content was in BF, but no significant differences was observed in the total DOC stocks among five vegetation restoration types. BF and EBF showed significantly greater average MBC concentrations and total MBC stocks than other vegetation restoration types. SOC and its LOC fractions were positively correlated with soil moisture and three enzyme activities in different degrees under the five vegetation restoration types and closely related with total nitrogen (TN) and total phosphorus (TP) except for TP of CFF and BF and negatively affected by pH (except for CFF and the DOC and MBC of MCBF) and BD. Generally, soil TN, TP, and invertase were found to be the main driver factors for soil carbon accumulation. However, the overall levels of SOC and its labile fractions indicate that BF had the strongest carbon storage capacity, followed by CFF and EBF. This study can provide a good reference for ecosystem management and the selection of appropriate restoration strategies in Danxia landform regions.

Suggested Citation

  • Ye Xiao & Zhigang Huang & Yulin Ling & Shenwen Cai & Boping Zeng & Sheng Liang & Xiao Wang, 2022. "Effects of Forest Vegetation Restoration on Soil Organic Carbon and Its Labile Fractions in the Danxia Landform of China," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12283-:d:926947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chuanhong Xu & Wenhua Xiang & Mengmeng Gou & Liang Chen & Pifeng Lei & Xi Fang & Xiangwen Deng & Shuai Ouyang, 2018. "Effects of Forest Restoration on Soil Carbon, Nitrogen, Phosphorus, and Their Stoichiometry in Hunan, Southern China," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    2. P. Dabral & Neelakshi Baithuri & Ashish Pandey, 2008. "Soil Erosion Assessment in a Hilly Catchment of North Eastern India Using USLE, GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1783-1798, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Huang & Zaijian Yuan & Mingguo Zheng & Yishan Liao & Kim Loi Nguyen & Thi Hong Nguyen & Samran Sombatpanit & Dingqiang Li, 2022. "Soil and Water Conservation Techniques in Tropical and Subtropical Asia: A Review," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    2. V. Prasannakumar & H. Vijith & N. Geetha & R. Shiny, 2011. "Regional Scale Erosion Assessment of a Sub-tropical Highland Segment in the Western Ghats of Kerala, South India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3715-3727, November.
    3. Demetris Zarris & Marianna Vlastara & Dionysia Panagoulia, 2011. "Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3785-3803, November.
    4. Wen-Chieh Chou, 2010. "Modelling Watershed Scale Soil Loss Prediction and Sediment Yield Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2075-2090, August.
    5. Ch. Jyotiprava Dash & N. K. Das & Partha Pratim Adhikary, 2019. "Rainfall erosivity and erosivity density in Eastern Ghats Highland of east India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 727-746, June.
    6. Susanta Das & Proloy Deb & Pradip Kumar Bora & Prafull Katre, 2020. "Comparison of RUSLE and MMF Soil Loss Models and Evaluation of Catchment Scale Best Management Practices for a Mountainous Watershed in India," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    7. Vesna Đukić & Zoran Radić, 2014. "GIS Based Estimation of Sediment Discharge and Areas of Soil Erosion and Deposition for the Torrential Lukovska River Catchment in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4567-4581, October.
    8. R. Bhalla & Neil Pelkey & K. Devi Prasad, 2011. "Application of GIS for Evaluation and Design of Watershed Guidelines," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 113-140, January.
    9. Salman A. H. Selmy & Salah H. Abd Al-Aziz & Raimundo Jiménez-Ballesta & Francisco Jesús García-Navarro & Mohamed E. Fadl, 2021. "Modeling and Assessing Potential Soil Erosion Hazards Using USLE and Wind Erosion Models in Integration with GIS Techniques: Dakhla Oasis, Egypt," Agriculture, MDPI, vol. 11(11), pages 1-29, November.
    10. Xuli Chen & Manfei Wang & Fujia Wu & Bo Sun & Tianyu Yang & Huixing Song, 2021. "Soil Bacteria and Fungi Respond Differently to Organisms Covering on Leshan Giant Buddha Body," Sustainability, MDPI, vol. 13(7), pages 1-13, April.
    11. Dawit Samuel Teshome & Mitiku Badasa Moisa & Dessalegn Obsi Gemeda & Songcai You, 2022. "Effect of Land Use-Land Cover Change on Soil Erosion and Sediment Yield in Muger Sub-Basin, Upper Blue Nile Basin, Ethiopia," Land, MDPI, vol. 11(12), pages 1-20, November.
    12. Sagarika Patowary & Arup Kumar Sarma, 2018. "GIS-Based Estimation of Soil Loss from Hilly Urban Area Incorporating Hill Cut Factor into RUSLE," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3535-3547, August.
    13. Zhijie Wang & Yuan Su, 2020. "Assessment of Soil Erosion in the Qinba Mountains of the Southern Shaanxi Province in China Using the RUSLE Model," Sustainability, MDPI, vol. 12(5), pages 1-17, February.
    14. Amit Kumar & Mamta Devi & Benidhar Deshmukh, 2014. "Integrated Remote Sensing and Geographic Information System Based RUSLE Modelling for Estimation of Soil Loss in Western Himalaya, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3307-3317, August.
    15. Richarde Silva & Suzana Montenegro & Celso Santos, 2012. "Integration of GIS and remote sensing for estimation of soil loss and prioritization of critical sub-catchments: a case study of Tapacurá catchment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 953-970, July.
    16. Antonio Minervino Amodio & Dario Gioia & Maria Danese & Nicola Masini & Canio Alfieri Sabia, 2023. "Land-Use Change Effects on Soil Erosion: The Case of Roman “Via Herculia” (Southern Italy)—Combining Historical Maps, Aerial Images and Soil Erosion Model," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    17. Jun Wang & Wei Dai & Kaikai Fang & Hui Gao & Zhimin Sha & Linkui Cao, 2022. "Nutrient Characterization in Soil Aggregate Fractions with Different Fertilizer Treatments in Greenhouse Vegetable Cultivation," Agriculture, MDPI, vol. 12(4), pages 1-15, March.
    18. Chun-hsu Lin & Te-hsiu Huang & Daigee Shaw, 2010. "Applying Water Quality Modeling to Regulating Land Development in a Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 629-640, March.
    19. Paulo de Oliveira & Teodorico Sobrinho & Dulce Rodrigues & Elói Panachuki, 2011. "Erosion Risk Mapping Applied to Environmental Zoning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 1021-1036, February.
    20. R. Singh & R. Panda & K. Satapathy & S. Ngachan, 2012. "Runoff and Sediment Yield Modelling for a Treated Hilly Watershed in Eastern Himalaya Using the Water Erosion Prediction Project Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 643-665, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12283-:d:926947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.