IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v60y2012i3p1133-1155.html
   My bibliography  Save this article

About the observed and future changes in temperature extremes over India

Author

Listed:
  • J. Revadekar
  • D. Kothawale
  • S. Patwardhan
  • G. Pant
  • K. Rupa Kumar

Abstract

An attempt is made in the present study to analyse observed and model simulated temperature extremes over Indian region. Daily maximum and minimum temperature data at 121 well-distributed stations for the period 1970–2003 have been used to study the observed changes in objectively defined values of temperature extremes. In addition, an assessment of future scenarios of temperature extremes associated with increase in the concentration of atmospheric greenhouse gases is done using simulations of a state-of-the-art regional climate modelling system known as PRECIS (Providing Regional Climate for Impact Studies) performed to generate the climate for the present (1961–1990) and future projections for the period 2071–2100. Observational analysis done with 121 stations suggests the widespread warming through increase in intensity and frequency of hot events and also with decrease in frequency of cold events. More than 75% stations show decreasing trend in number of cold events and about 70% stations show increasing trend in hot events. Percentage of stations towards the warming through intensity indices of highest maximum temperature, lowest minimum temperature is 78 and 71% stations, respectively. Remaining stations show opposite trends, however, most of them are statistically insignificant. Observational analysis for India as a whole also shows similar results. Composite anomalies for monthly temperature extremes over two equal parts of the data period show increase (decrease) in the frequency of hot (cold) events for all months. In general, PRECIS simulations under both A2 and B2 scenarios indicate increase (decrease) in hot (cold) extremes towards the end of twenty-first century. Both show similar patterns, but the B2 scenario shows slightly lower magnitudes of the projected changes. Temperatures are likely to increase in entire calendar year, but the changes in winter season are expected to be prominent. Diurnal temperature range is expected to decrease in winter (JF) and pre-monsoon (MAM) months. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • J. Revadekar & D. Kothawale & S. Patwardhan & G. Pant & K. Rupa Kumar, 2012. "About the observed and future changes in temperature extremes over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1133-1155, February.
  • Handle: RePEc:spr:nathaz:v:60:y:2012:i:3:p:1133-1155
    DOI: 10.1007/s11069-011-9895-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9895-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9895-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soma Sen Roy & Shouraseni Sen Roy, 2021. "Spatial patterns of long-term trends in thunderstorms in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1527-1540, June.
    2. Mohsen Abbasnia, 2019. "Climatic characteristics of heat waves under climate change: a case study of mid-latitudes, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 637-656, April.
    3. Neha Mittal & Ashok Mishra & Rajendra Singh, 2013. "Combining climatological and participatory approaches for assessing changes in extreme climatic indices at regional scale," Climatic Change, Springer, vol. 119(3), pages 603-615, August.
    4. Victor Ongoma & Haishan Chen & Chujie Gao & Aston Matwai Nyongesa & Francis Polong, 2018. "Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 901-920, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    2. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    3. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    4. Chan, Nathan & Wichman, Casey, 2017. "The Effects of Climate on Leisure Demand: Evidence from North America," RFF Working Paper Series 17-20, Resources for the Future.
    5. Richter, Andries & Grasman, Johan, 2013. "The transmission of sustainable harvesting norms when agents are conditionally cooperative," Ecological Economics, Elsevier, vol. 93(C), pages 202-209.
    6. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    7. Andrew J Allyn & Michael A Alexander & Bradley S Franklin & Felix Massiot-Granier & Andrew J Pershing & James D Scott & Katherine E Mills, 2020. "Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-28, April.
    8. Nye, Janet A. & Gamble, Robert J. & Link, Jason S., 2013. "The relative impact of warming and removing top predators on the Northeast US large marine biotic community," Ecological Modelling, Elsevier, vol. 264(C), pages 157-168.
    9. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    10. Fei, Teng & Skidmore, Andrew K. & Venus, Valentijn & Wang, Tiejun & Toxopeus, Bert & Bian, Meng & Liu, Yaolin, 2012. "Predicting micro thermal habitat of lizards in a dynamic thermal environment," Ecological Modelling, Elsevier, vol. 231(C), pages 126-133.
    11. Ralf C Buckley & J Guy Castley & Fernanda de Vasconcellos Pegas & Alexa C Mossaz & Rochelle Steven, 2012. "A Population Accounting Approach to Assess Tourism Contributions to Conservation of IUCN-Redlisted Mammal Species," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-8, September.
    12. Aagaard, Kevin J. & Thogmartin, Wayne E. & Lonsdorf, Eric V., 2018. "Temperature-influenced energetics model for migrating waterfowl," Ecological Modelling, Elsevier, vol. 378(C), pages 46-58.
    13. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    14. Hu, Saiquan & Jia, Xiao & Zhang, Xiaojin & Zheng, Xiaoying & Zhu, Junming, 2017. "How political ideology affects climate perception: Moderation effects of time orientation and knowledge," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 124-131.
    15. Sajid Khan & Zishan Ahmad Wani & Rameez Ahmad & Kailash S. Gaira & Susheel Verma, 2024. "Time series analysis of climatic variability and trends in Shiwalik to Pir Panjal mountain range in the Indian western Himalaya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20355-20377, August.
    16. Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
    17. Edward Kato & Claudia Ringler & Mahmud Yesuf & Elizabeth Bryan, 2011. "Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 593-604, September.
    18. Lazarus Chapungu & Luxon Nhamo & Roberto Cazzolla Gatti & Munyaradzi Chitakira, 2020. "Quantifying Changes in Plant Species Diversity in a Savanna Ecosystem Through Observed and Remotely Sensed Data," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    19. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    20. Ding, Helen & Nunes, Paulo A.L.D., 2014. "Modeling the links between biodiversity, ecosystem services and human wellbeing in the context of climate change: Results from an econometric analysis of the European forest ecosystems," Ecological Economics, Elsevier, vol. 97(C), pages 60-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:60:y:2012:i:3:p:1133-1155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.