IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v45y2008i1p19-31.html
   My bibliography  Save this article

Impact of lightning on organic matter-rich soils: influence of soil grain size and organic matter content on underground fires

Author

Listed:
  • Vittorio Zanon
  • Fátima Viveiros
  • Catarina Silva
  • Ana Hipólito
  • Teresa Ferreira

Abstract

A detailed study was carried out on a piece of land that had been struck by lightning during the violent rainstorm that raged over the Island of São Miguel (Azores Archipelago) in late October 2006. Temperature and gas measurements (CO 2 , CO, H 2 S and CH 4 ) were performed in four study trenches, dug in an area of ∼3 m 2 , where an underground fire had been initiated by the impact with a lightning stroke, followed by the emission of a column of gases and smoke. The soil under study was originally a well-pedogenized about 80 cm thick bed, made of volcanic clayey to silty tephra fallouts $$(\rm{Md}_{\phi}=1.1; \sigma_{\phi}=2.2)$$ and contained 5.5–9.7% of organic matter. The underground fire was monitored for one week and revealed a peak release of 404 ppm CO and 3.4% CO 2 originating from a horizon located about 45 cm under the soil surface. Measurements of temperature, performed one week after the impact, indicated a maximum value of 326°C inside the soil, while 516.5°C were measured on the surface of a lava block interred about 20 cm under the surface. Subsequently, a stratigraphic and sedimentologic study proved the role of the grain-size of the soil and of the organic matter content of the different horizons of the impact area, in determining the ratio between anoxic/oxidised combustion conditions and in the progress of the process itself. It was also noticed that combustion was not total all over in the soil bed and that the process had slightly migrated toward SW during the observation period. The combustion process went on for about ten days, in spite of several other violent rainstorms, until it was artificially extinguished through the excavations made to obtain study trenches. This particular circumstance evidenced the potential natural hazard represented by this kind of atmospheric event, especially in a land where the volcanic nature of the soil may easily mislead inexperienced observers and, consequently, delay proper action. Copyright Springer Science+Business Media B.V. 2008

Suggested Citation

  • Vittorio Zanon & Fátima Viveiros & Catarina Silva & Ana Hipólito & Teresa Ferreira, 2008. "Impact of lightning on organic matter-rich soils: influence of soil grain size and organic matter content on underground fires," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 19-31, April.
  • Handle: RePEc:spr:nathaz:v:45:y:2008:i:1:p:19-31
    DOI: 10.1007/s11069-007-9154-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-007-9154-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-007-9154-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Abrahamson & James Dinniss, 2000. "Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil," Nature, Nature, vol. 403(6769), pages 519-521, February.
    2. Drossel, B. & Schwabl, F., 1992. "Self-organized criticality in a forest-fire model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 191(1), pages 47-50.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Benicio, Rosilda B. & Stošić, Tatijana & de Figueirêdo, P.H. & Stošić, Borko D., 2013. "Multifractal behavior of wild-land and forest fire time series in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6367-6374.
    2. Satulovsky, Javier E., 1997. "On the synchronizing mechanism of a class of cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 237(1), pages 52-58.
    3. Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
    4. Bill McKelvey & Benyamin B. Lichtenstein & Pierpaolo Andriani, 2012. "When organisations and ecosystems interact: toward a law of requisite fractality in firms," International Journal of Complexity in Leadership and Management, Inderscience Enterprises Ltd, vol. 2(1/2), pages 104-136.
    5. Batac, Rene & Longjas, Anthony & Monterola, Christopher, 2012. "Statistical distributions of avalanche size and waiting times in an inter-sandpile cascade model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 616-624.
    6. Marzouk, Cyril, 2016. "Fires on large recursive trees," Stochastic Processes and their Applications, Elsevier, vol. 126(1), pages 265-289.
    7. Benavent-Corai, J. & Rojo, C. & Suárez-Torres, J. & Velasco-García, L., 2007. "Scaling properties in forest fire sequences: The human role in the order of nature," Ecological Modelling, Elsevier, vol. 205(3), pages 336-342.
    8. LaViolette, Randall A. & Glass, Kristin & Colbaugh, Richard, 2009. "Deep information from limited observation of robust yet fragile systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3283-3287.
    9. Honecker, A. & Peschel, I., 1997. "Length scales and power laws in the two-dimensional forest-fire model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 239(4), pages 509-530.
    10. Tang, Da-Hai & Han, Xiao-Pu & Wang, Bing-Hong, 2010. "Stretched exponential distribution of recurrent time of wars in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2637-2641.
    11. Gran, Joseph D. & Rundle, John B. & Turcotte, Donald L. & Holliday, James R. & Klein, William, 2011. "A damage model based on failure threshold weakening," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1269-1278.
    12. Bonabeau, Eric, 1994. "Self-reorganizations in a simple model of the immune system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 208(3), pages 336-350.
    13. Drossel, B. & Schwabl, F., 1993. "Forest-fire model with immune trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 199(2), pages 183-197.
    14. Khakzad, Nima, 2019. "Modeling wildfire spread in wildland-industrial interfaces using dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 165-176.
    15. Bak, Per, 1992. "Self-organized criticality in non-conservative models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 191(1), pages 41-46.
    16. De Caux, Robert & McGroarty, Frank & Brede, Markus, 2017. "The evolution of risk and bailout strategy in banking systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 109-118.
    17. Zinck, Richard D. & Johst, Karin & Grimm, Volker, 2010. "Wildfire, landscape diversity and the Drossel–Schwabl model," Ecological Modelling, Elsevier, vol. 221(1), pages 98-105.
    18. Macpherson, K.P. & MacKinnon, A.L., 1997. "One-dimensional percolation models of transient phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 243(1), pages 1-13.
    19. Peyrard, N. & Dieckmann, U. & Franc, A., 2008. "Long-range correlations improve understanding of the influence of network structure on contact dynamics," Theoretical Population Biology, Elsevier, vol. 73(3), pages 383-394.
    20. Lin, Jianyi & Rinaldi, Sergio, 2009. "A derivation of the statistical characteristics of forest fires," Ecological Modelling, Elsevier, vol. 220(7), pages 898-903.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:45:y:2008:i:1:p:19-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.