IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v403y2000i6769d10.1038_35000525.html
   My bibliography  Save this article

Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil

Author

Listed:
  • John Abrahamson

    (University of Canterbury Private Bag 4800)

  • James Dinniss

    (University of Canterbury Private Bag 4800)

Abstract

Observations of ball lightning have been reported for centuries, but the origin of this phenomenon remains an enigma. The ‘average’ ball lightning appears as a sphere with a diameter of 300 mm, a lifetime of about 10 s, and a luminosity similar to a 100-W lamp1. It floats freely in the air, and ends either in an explosion, or by simply fading from view. It almost invariably occurs during stormy weather2,3. Several energy sources have been proposed2,3,4 to explain the light, but none of these models has succeeded in explaining all of the observed characteristics. Here we report a model that potentially accounts for all of those properties, and which has some experimental support. When normal lightning strikes soil, chemical energy is stored in nanoparticles of Si, SiO or SiC, which are ejected into the air as a filamentary network. As the particles are slowly oxidized in air, the stored energy is released as heat and light. We investigated this basic process by exposing soil samples to a lightning-like discharge, which produced chain aggregates of nanoparticles: these particles oxidize at a rate appropriate for explaining the lifetime of ball lightning.

Suggested Citation

  • John Abrahamson & James Dinniss, 2000. "Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil," Nature, Nature, vol. 403(6769), pages 519-521, February.
  • Handle: RePEc:nat:nature:v:403:y:2000:i:6769:d:10.1038_35000525
    DOI: 10.1038/35000525
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35000525
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35000525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vittorio Zanon & Fátima Viveiros & Catarina Silva & Ana Hipólito & Teresa Ferreira, 2008. "Impact of lightning on organic matter-rich soils: influence of soil grain size and organic matter content on underground fires," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 19-31, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:403:y:2000:i:6769:d:10.1038_35000525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.